Alternative technique for hydroxyapatite coatings

Flame Assisted Chemical Vapor Deposition (FACVD), a novel technique that shows an enormous potential in porous oxides deposition, was employed for the first time aiming to obtain hydroxyapatite (HA) coatings on 316 L stainless steel metallic substrates. Calcium acetate and ammonium phosphate diluted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2007-10, Vol.201 (24), p.9587-9593
Hauptverfasser: Trommer, R.M., Santos, L.A., Bergmann, C.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flame Assisted Chemical Vapor Deposition (FACVD), a novel technique that shows an enormous potential in porous oxides deposition, was employed for the first time aiming to obtain hydroxyapatite (HA) coatings on 316 L stainless steel metallic substrates. Calcium acetate and ammonium phosphate diluted in ethanol were employed as precursor salts. A Ca/P molar ratio of 1.66 was employed in precursor solution, which is equivalent to stoichiometric hydroxyapatite. A porous coating, formed by an open and interconnected network, was observed by scanning electronic microscopy (SEM) and associated with homogenous reactions. Thickness of hydroxyapatite coating was 412 ± 3 μm. X-ray diffraction (XRD) analysis indicated the presence of crystalline coatings, mainly constituted by hydroxyapatite phase and traces of tricalcium phosphate (β-TCP). Carbonate in the hydroxyapatite coatings was identified by Fourier transform-infrared (FTIR) spectroscopy.
ISSN:0257-8972
1879-3347
DOI:10.1016/j.surfcoat.2007.04.028