Concentration and speciation of heavy metals in six different sewage sludge-composts

This study presents the concentrations and speciation of heavy metals (HMs) in six different composts of sewage sludges deriving from two wastewater treatment plants in China. After 56 days of sludge composting with rice straw at a low C/N ratio (13:1), cadmium (Cd), copper (Cu), lead (Pb) and zinc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2007-08, Vol.147 (3), p.1063-1072
Hauptverfasser: Cai, Quan-Ying, Mo, Ce-Hui, Wu, Qi-Tang, Zeng, Qiao-Yun, Katsoyiannis, Athanasios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents the concentrations and speciation of heavy metals (HMs) in six different composts of sewage sludges deriving from two wastewater treatment plants in China. After 56 days of sludge composting with rice straw at a low C/N ratio (13:1), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) were enriched in sludge composts, exhibiting concentrations that varied from 0.75 to 2.0, 416 to 458, 66 to 168 and 1356 to 1750 mg kg −1 dry weight (d.w.), respectively. The concentrations increased by 12–60% for Cd, 8–17% for Cu, 15–43% for Pb and 14–44% for Zn compared to those in sewage sludges. The total concentrations of individual or total elements in the final composts exceeded the maximum permissible limits proposed for compost or fertilizer. In all the final composts, more than 70% of total Cu was associated with organic matter-bound fraction, while Zn was mainly concentrated in exchangeable and Fe–Mn oxide-bound fractions which implied the high mobility and bioavailability. Continuously aerated composting treatment exhibited better compost quality and lower potential toxicity of HMs, whereas inoculant with microorganism and enzyme spiked during composting had no obvious advantage on humification of organic matter and on reducing HM mobility and bioavailability.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2007.01.142