Angiotensin converting enzyme inhibition of fish protein hydrolysates prepared from alkaline-aided channel catfish protein isolate
Peptides derived from aquatic animals have been shown to have inhibitory activity against angiotensin converting enzyme (ACE), which is a key enzyme behind elevated blood pressure. In this study a catfish protein isolate was prepared and hydrolyzed to 5%, 15% and 30% degrees of hydrolysis (% DH) and...
Gespeichert in:
Veröffentlicht in: | Journal of the science of food and agriculture 2007-09, Vol.87 (12), p.2353-2357 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Peptides derived from aquatic animals have been shown to have inhibitory activity against angiotensin converting enzyme (ACE), which is a key enzyme behind elevated blood pressure. In this study a catfish protein isolate was prepared and hydrolyzed to 5%, 15% and 30% degrees of hydrolysis (% DH) and soluble peptides separated from the total hydrolysate. The hydrolysate and its soluble peptide fraction were studied separately. Increased hydrolysis produced smaller peptides, with the smallest peptides remaining in the soluble fraction. Both hydrolysates and its soluble fraction had high ACE inhibition activities, from 70% to 90.6%, depending on fraction and % DH. Results suggested that there is not a simple relationship between average peptide size and extent of % DH and ACE inactivation, but clearly the soluble fraction of the hydrolysate, containing the smallest peptides, is responsible for most of the ACE inhibition activity of the hydrolysate. Hydrolysates prepared from a pure and uniform catfish protein isolate substrate do therefore show a potential for ACE inhibition and may find use as bioactive ingredients. Copyright © 2007 Society of Chemical Industry |
---|---|
ISSN: | 0022-5142 1097-0010 |
DOI: | 10.1002/jsfa.2984 |