Online inferential product attribute estimation for optimal operation of emulsion terpolymerisation: Application to styrene/MMA/MA

An advanced model for process design and control of emulsion terpolymerisation was developed. A test case of emulsion terpolymerisation of styrene (Sty), methyl methacrylate (MMA) and methyl acrylate (MA) was investigated on state of the art facilities for predicting, optimising and control end-use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2007-08, Vol.62 (16), p.4420-4438
Hauptverfasser: Srour, M.H., Gomes, V.G., Romagnoli, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An advanced model for process design and control of emulsion terpolymerisation was developed. A test case of emulsion terpolymerisation of styrene (Sty), methyl methacrylate (MMA) and methyl acrylate (MA) was investigated on state of the art facilities for predicting, optimising and control end-use product properties including global and individual conversions, terpolymer composition, the average particle diameter and concentration, glass transition temperature, molecular weight distribution, the number- and weight-average molecular weights and particle size distribution. The model equations include diffusion-controlled kinetics at high monomer conversions, where transition from a ‘zero–one’ to a ‘pseudo-bulk’ regime occurs. Transport equations are used to describe the system transients for batch and semi-batch processes. The particle evolution is described by population balance equations which comprised a set of integro-partial differential and nonlinear algebraic equations. Backward finite difference approximation method is used to discretise the population equation and converts them from partial differential equations to ordinary differential equations. The model predictions were experimentally validated in the laboratory and were found to be in excellent agreement, thus paving the way for further application of the model.
ISSN:0009-2509
1873-4405
DOI:10.1016/j.ces.2007.04.046