Neural Network and Fuzzy Logic Diagnostics of 1x Faults in Rotating Machinery

In this paper, the application of neural networks and fuzzy logic to the diagnosis of faults in rotating machinery is investigated. The learning-vector-quantization (LVQ) neural network is applied in series and in parallel to a fuzzy inference engine, to diagnose 1x faults. The faults investigated a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering for gas turbines and power 2007-07, Vol.129 (3), p.703-710
Hauptverfasser: El-Shafei, A., Hassan, T. A. F., Soliman, A. K., Zeyada, Y., Rieger, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the application of neural networks and fuzzy logic to the diagnosis of faults in rotating machinery is investigated. The learning-vector-quantization (LVQ) neural network is applied in series and in parallel to a fuzzy inference engine, to diagnose 1x faults. The faults investigated are unbalance, misalignment, and structural looseness. The method is applied to a test rig (Hassan et al., 2003, ASME Paper No. GT 2003-38450), and the effectiveness of the integrated Neural Network and Fuzzy Logic method is illustrated.
ISSN:0742-4795
1528-8919
DOI:10.1115/1.2227417