Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments
The three notorious earthquakes of 1999 in Turkey (Kocaeli and Düzce) and Taiwan (Chi-Chi), having offered numerous examples of surface fault rupturing underneath civil engineering structures, prompted increased interest in the subject. This paper develops a nonlinear finite-element methodology to s...
Gespeichert in:
Veröffentlicht in: | Journal of geotechnical and geoenvironmental engineering 2007-08, Vol.133 (8), p.943-958 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 958 |
---|---|
container_issue | 8 |
container_start_page | 943 |
container_title | Journal of geotechnical and geoenvironmental engineering |
container_volume | 133 |
creator | Anastasopoulos, I Gazetas, G Bransby, M. F Davies, M. C. R El Nahas, A |
description | The three notorious earthquakes of 1999 in Turkey (Kocaeli and Düzce) and Taiwan (Chi-Chi), having offered numerous examples of surface fault rupturing underneath civil engineering structures, prompted increased interest in the subject. This paper develops a nonlinear finite-element methodology to study dip–slip (“normal” and “reverse”) fault rupture propagation through sand. The procedure is verified through successful Class A predictions of four centrifuge model tests. The validated methodology is then utilized in a parametric study of fault rupture propagation through sand. Emphasis is given to results of engineering significance, such as: (1) the location of fault outcropping; (2) the vertical displacement profile of the ground surface; and (3) the minimum fault offset at bedrock necessary for the rupture to reach the ground surface. The analysis shows that dip–slip faults refract at the soil–rock interface, initially increasing in dip. Normal faults may keep increasing their dip as they approach the ground surface, as a function of the peak friction angle
φp
and the angle of dilation
ψp
. In contrast, reverse faults tend to decrease in dip, as they emerge on the ground surface. For small values of the base fault offset,
h
, relative to the soil thickness,
H
, a dip–slip rupture cannot propagate all the way to the surface. The
h∕H
ratio required for outcropping is an increasing function of soil “ductility.” Reverse faults require significantly higher
h∕H
to outcrop, compared to normal faults. When the rupture outcrops, the height of the fault scrap,
s
, also depends on soil ductility. |
doi_str_mv | 10.1061/(ASCE)1090-0241(2007)133:8(943) |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30047706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>7520618</sourcerecordid><originalsourceid>FETCH-LOGICAL-a512t-87dac0dda4899c8c7677c87f8a4ff57942291e0f98542ebb62f7ec8072c2823</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoso-PkfclF3D9VJmjbJHoRl2VVBUFzxGmKarJFuW5MW9N-bsn7gRU8TyDPvzPAkySmGMwwFPh9Nl7P5GIOAFAjFIwLAxjjLJnwkaDbeSvZwrGleQLEd31_cbrIfwgsAUOBkL1kvVF916L5vu94bdOebVq1U55oadc--6VfPaKnqcoIWrnadSeeVWZu6Q9NaVe_BBRQ_0aOqXPm7aRYh72y_Mmj-1hrvhq5wmOxYVQVz9FkPkuVi_jC7Sm9uL69n05tU5Zh0KWel0lCWinIhNNesYExzZrmi1uZMUEIENmAFzykxT08FscxoDoxowkl2kJxsUlvfvPYmdHLtgjZVpWrT9EFm8XjGoPgXJEAEJ5hGcPQniDnL4y6c8ohebFDtmxC8sbKNxyv_LjHIQZyUgzg5CJGDEDmIk1Gc5DIKiwHHn7NU0KqyXtXahZ8ULnJciIGbbLiIGfnS9D4qCd9T_h7yAZE5q4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875854848</pqid></control><display><type>article</type><title>Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Anastasopoulos, I ; Gazetas, G ; Bransby, M. F ; Davies, M. C. R ; El Nahas, A</creator><creatorcontrib>Anastasopoulos, I ; Gazetas, G ; Bransby, M. F ; Davies, M. C. R ; El Nahas, A</creatorcontrib><description>The three notorious earthquakes of 1999 in Turkey (Kocaeli and Düzce) and Taiwan (Chi-Chi), having offered numerous examples of surface fault rupturing underneath civil engineering structures, prompted increased interest in the subject. This paper develops a nonlinear finite-element methodology to study dip–slip (“normal” and “reverse”) fault rupture propagation through sand. The procedure is verified through successful Class A predictions of four centrifuge model tests. The validated methodology is then utilized in a parametric study of fault rupture propagation through sand. Emphasis is given to results of engineering significance, such as: (1) the location of fault outcropping; (2) the vertical displacement profile of the ground surface; and (3) the minimum fault offset at bedrock necessary for the rupture to reach the ground surface. The analysis shows that dip–slip faults refract at the soil–rock interface, initially increasing in dip. Normal faults may keep increasing their dip as they approach the ground surface, as a function of the peak friction angle
φp
and the angle of dilation
ψp
. In contrast, reverse faults tend to decrease in dip, as they emerge on the ground surface. For small values of the base fault offset,
h
, relative to the soil thickness,
H
, a dip–slip rupture cannot propagate all the way to the surface. The
h∕H
ratio required for outcropping is an increasing function of soil “ductility.” Reverse faults require significantly higher
h∕H
to outcrop, compared to normal faults. When the rupture outcrops, the height of the fault scrap,
s
, also depends on soil ductility.</description><identifier>ISSN: 1090-0241</identifier><identifier>EISSN: 1943-5606</identifier><identifier>DOI: 10.1061/(ASCE)1090-0241(2007)133:8(943)</identifier><language>eng</language><publisher>New York, NY: American Society of Civil Engineers</publisher><subject>Applied sciences ; Buildings. Public works ; Civil engineering ; Computation methods. Tables. Charts ; Earthquakes ; Exact sciences and technology ; Geotechnics ; Q1 ; Q3 ; Sand ; Seismic activity ; Soil ; Soil mechanics. Rocks mechanics ; Structural analysis. Stresses ; Structure-soil interaction ; Taiwan ; TECHNICAL PAPERS ; Turkey ; Turkey, Kocaeli</subject><ispartof>Journal of geotechnical and geoenvironmental engineering, 2007-08, Vol.133 (8), p.943-958</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a512t-87dac0dda4899c8c7677c87f8a4ff57942291e0f98542ebb62f7ec8072c2823</citedby><cites>FETCH-LOGICAL-a512t-87dac0dda4899c8c7677c87f8a4ff57942291e0f98542ebb62f7ec8072c2823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)1090-0241(2007)133:8(943)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)1090-0241(2007)133:8(943)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,75935,75943</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18951693$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Anastasopoulos, I</creatorcontrib><creatorcontrib>Gazetas, G</creatorcontrib><creatorcontrib>Bransby, M. F</creatorcontrib><creatorcontrib>Davies, M. C. R</creatorcontrib><creatorcontrib>El Nahas, A</creatorcontrib><title>Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments</title><title>Journal of geotechnical and geoenvironmental engineering</title><description>The three notorious earthquakes of 1999 in Turkey (Kocaeli and Düzce) and Taiwan (Chi-Chi), having offered numerous examples of surface fault rupturing underneath civil engineering structures, prompted increased interest in the subject. This paper develops a nonlinear finite-element methodology to study dip–slip (“normal” and “reverse”) fault rupture propagation through sand. The procedure is verified through successful Class A predictions of four centrifuge model tests. The validated methodology is then utilized in a parametric study of fault rupture propagation through sand. Emphasis is given to results of engineering significance, such as: (1) the location of fault outcropping; (2) the vertical displacement profile of the ground surface; and (3) the minimum fault offset at bedrock necessary for the rupture to reach the ground surface. The analysis shows that dip–slip faults refract at the soil–rock interface, initially increasing in dip. Normal faults may keep increasing their dip as they approach the ground surface, as a function of the peak friction angle
φp
and the angle of dilation
ψp
. In contrast, reverse faults tend to decrease in dip, as they emerge on the ground surface. For small values of the base fault offset,
h
, relative to the soil thickness,
H
, a dip–slip rupture cannot propagate all the way to the surface. The
h∕H
ratio required for outcropping is an increasing function of soil “ductility.” Reverse faults require significantly higher
h∕H
to outcrop, compared to normal faults. When the rupture outcrops, the height of the fault scrap,
s
, also depends on soil ductility.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Civil engineering</subject><subject>Computation methods. Tables. Charts</subject><subject>Earthquakes</subject><subject>Exact sciences and technology</subject><subject>Geotechnics</subject><subject>Q1</subject><subject>Q3</subject><subject>Sand</subject><subject>Seismic activity</subject><subject>Soil</subject><subject>Soil mechanics. Rocks mechanics</subject><subject>Structural analysis. Stresses</subject><subject>Structure-soil interaction</subject><subject>Taiwan</subject><subject>TECHNICAL PAPERS</subject><subject>Turkey</subject><subject>Turkey, Kocaeli</subject><issn>1090-0241</issn><issn>1943-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LxDAQhoso-PkfclF3D9VJmjbJHoRl2VVBUFzxGmKarJFuW5MW9N-bsn7gRU8TyDPvzPAkySmGMwwFPh9Nl7P5GIOAFAjFIwLAxjjLJnwkaDbeSvZwrGleQLEd31_cbrIfwgsAUOBkL1kvVF916L5vu94bdOebVq1U55oadc--6VfPaKnqcoIWrnadSeeVWZu6Q9NaVe_BBRQ_0aOqXPm7aRYh72y_Mmj-1hrvhq5wmOxYVQVz9FkPkuVi_jC7Sm9uL69n05tU5Zh0KWel0lCWinIhNNesYExzZrmi1uZMUEIENmAFzykxT08FscxoDoxowkl2kJxsUlvfvPYmdHLtgjZVpWrT9EFm8XjGoPgXJEAEJ5hGcPQniDnL4y6c8ohebFDtmxC8sbKNxyv_LjHIQZyUgzg5CJGDEDmIk1Gc5DIKiwHHn7NU0KqyXtXahZ8ULnJciIGbbLiIGfnS9D4qCd9T_h7yAZE5q4k</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Anastasopoulos, I</creator><creator>Gazetas, G</creator><creator>Bransby, M. F</creator><creator>Davies, M. C. R</creator><creator>El Nahas, A</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SM</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20070801</creationdate><title>Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments</title><author>Anastasopoulos, I ; Gazetas, G ; Bransby, M. F ; Davies, M. C. R ; El Nahas, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a512t-87dac0dda4899c8c7677c87f8a4ff57942291e0f98542ebb62f7ec8072c2823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Civil engineering</topic><topic>Computation methods. Tables. Charts</topic><topic>Earthquakes</topic><topic>Exact sciences and technology</topic><topic>Geotechnics</topic><topic>Q1</topic><topic>Q3</topic><topic>Sand</topic><topic>Seismic activity</topic><topic>Soil</topic><topic>Soil mechanics. Rocks mechanics</topic><topic>Structural analysis. Stresses</topic><topic>Structure-soil interaction</topic><topic>Taiwan</topic><topic>TECHNICAL PAPERS</topic><topic>Turkey</topic><topic>Turkey, Kocaeli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anastasopoulos, I</creatorcontrib><creatorcontrib>Gazetas, G</creatorcontrib><creatorcontrib>Bransby, M. F</creatorcontrib><creatorcontrib>Davies, M. C. R</creatorcontrib><creatorcontrib>El Nahas, A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of geotechnical and geoenvironmental engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anastasopoulos, I</au><au>Gazetas, G</au><au>Bransby, M. F</au><au>Davies, M. C. R</au><au>El Nahas, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments</atitle><jtitle>Journal of geotechnical and geoenvironmental engineering</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>133</volume><issue>8</issue><spage>943</spage><epage>958</epage><pages>943-958</pages><issn>1090-0241</issn><eissn>1943-5606</eissn><abstract>The three notorious earthquakes of 1999 in Turkey (Kocaeli and Düzce) and Taiwan (Chi-Chi), having offered numerous examples of surface fault rupturing underneath civil engineering structures, prompted increased interest in the subject. This paper develops a nonlinear finite-element methodology to study dip–slip (“normal” and “reverse”) fault rupture propagation through sand. The procedure is verified through successful Class A predictions of four centrifuge model tests. The validated methodology is then utilized in a parametric study of fault rupture propagation through sand. Emphasis is given to results of engineering significance, such as: (1) the location of fault outcropping; (2) the vertical displacement profile of the ground surface; and (3) the minimum fault offset at bedrock necessary for the rupture to reach the ground surface. The analysis shows that dip–slip faults refract at the soil–rock interface, initially increasing in dip. Normal faults may keep increasing their dip as they approach the ground surface, as a function of the peak friction angle
φp
and the angle of dilation
ψp
. In contrast, reverse faults tend to decrease in dip, as they emerge on the ground surface. For small values of the base fault offset,
h
, relative to the soil thickness,
H
, a dip–slip rupture cannot propagate all the way to the surface. The
h∕H
ratio required for outcropping is an increasing function of soil “ductility.” Reverse faults require significantly higher
h∕H
to outcrop, compared to normal faults. When the rupture outcrops, the height of the fault scrap,
s
, also depends on soil ductility.</abstract><cop>New York, NY</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)1090-0241(2007)133:8(943)</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1090-0241 |
ispartof | Journal of geotechnical and geoenvironmental engineering, 2007-08, Vol.133 (8), p.943-958 |
issn | 1090-0241 1943-5606 |
language | eng |
recordid | cdi_proquest_miscellaneous_30047706 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Applied sciences Buildings. Public works Civil engineering Computation methods. Tables. Charts Earthquakes Exact sciences and technology Geotechnics Q1 Q3 Sand Seismic activity Soil Soil mechanics. Rocks mechanics Structural analysis. Stresses Structure-soil interaction Taiwan TECHNICAL PAPERS Turkey Turkey, Kocaeli |
title | Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Rupture%20Propagation%20through%20Sand:%20Finite-Element%20Analysis%20and%20Validation%20through%20Centrifuge%20Experiments&rft.jtitle=Journal%20of%20geotechnical%20and%20geoenvironmental%20engineering&rft.au=Anastasopoulos,%20I&rft.date=2007-08-01&rft.volume=133&rft.issue=8&rft.spage=943&rft.epage=958&rft.pages=943-958&rft.issn=1090-0241&rft.eissn=1943-5606&rft_id=info:doi/10.1061/(ASCE)1090-0241(2007)133:8(943)&rft_dat=%3Cproquest_cross%3E7520618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875854848&rft_id=info:pmid/&rfr_iscdi=true |