Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments

The three notorious earthquakes of 1999 in Turkey (Kocaeli and Düzce) and Taiwan (Chi-Chi), having offered numerous examples of surface fault rupturing underneath civil engineering structures, prompted increased interest in the subject. This paper develops a nonlinear finite-element methodology to s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geotechnical and geoenvironmental engineering 2007-08, Vol.133 (8), p.943-958
Hauptverfasser: Anastasopoulos, I, Gazetas, G, Bransby, M. F, Davies, M. C. R, El Nahas, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 958
container_issue 8
container_start_page 943
container_title Journal of geotechnical and geoenvironmental engineering
container_volume 133
creator Anastasopoulos, I
Gazetas, G
Bransby, M. F
Davies, M. C. R
El Nahas, A
description The three notorious earthquakes of 1999 in Turkey (Kocaeli and Düzce) and Taiwan (Chi-Chi), having offered numerous examples of surface fault rupturing underneath civil engineering structures, prompted increased interest in the subject. This paper develops a nonlinear finite-element methodology to study dip–slip (“normal” and “reverse”) fault rupture propagation through sand. The procedure is verified through successful Class A predictions of four centrifuge model tests. The validated methodology is then utilized in a parametric study of fault rupture propagation through sand. Emphasis is given to results of engineering significance, such as: (1) the location of fault outcropping; (2) the vertical displacement profile of the ground surface; and (3) the minimum fault offset at bedrock necessary for the rupture to reach the ground surface. The analysis shows that dip–slip faults refract at the soil–rock interface, initially increasing in dip. Normal faults may keep increasing their dip as they approach the ground surface, as a function of the peak friction angle φp and the angle of dilation ψp . In contrast, reverse faults tend to decrease in dip, as they emerge on the ground surface. For small values of the base fault offset, h , relative to the soil thickness, H , a dip–slip rupture cannot propagate all the way to the surface. The h∕H ratio required for outcropping is an increasing function of soil “ductility.” Reverse faults require significantly higher h∕H to outcrop, compared to normal faults. When the rupture outcrops, the height of the fault scrap, s , also depends on soil ductility.
doi_str_mv 10.1061/(ASCE)1090-0241(2007)133:8(943)
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30047706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>7520618</sourcerecordid><originalsourceid>FETCH-LOGICAL-a512t-87dac0dda4899c8c7677c87f8a4ff57942291e0f98542ebb62f7ec8072c2823</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoso-PkfclF3D9VJmjbJHoRl2VVBUFzxGmKarJFuW5MW9N-bsn7gRU8TyDPvzPAkySmGMwwFPh9Nl7P5GIOAFAjFIwLAxjjLJnwkaDbeSvZwrGleQLEd31_cbrIfwgsAUOBkL1kvVF916L5vu94bdOebVq1U55oadc--6VfPaKnqcoIWrnadSeeVWZu6Q9NaVe_BBRQ_0aOqXPm7aRYh72y_Mmj-1hrvhq5wmOxYVQVz9FkPkuVi_jC7Sm9uL69n05tU5Zh0KWel0lCWinIhNNesYExzZrmi1uZMUEIENmAFzykxT08FscxoDoxowkl2kJxsUlvfvPYmdHLtgjZVpWrT9EFm8XjGoPgXJEAEJ5hGcPQniDnL4y6c8ohebFDtmxC8sbKNxyv_LjHIQZyUgzg5CJGDEDmIk1Gc5DIKiwHHn7NU0KqyXtXahZ8ULnJciIGbbLiIGfnS9D4qCd9T_h7yAZE5q4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875854848</pqid></control><display><type>article</type><title>Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Anastasopoulos, I ; Gazetas, G ; Bransby, M. F ; Davies, M. C. R ; El Nahas, A</creator><creatorcontrib>Anastasopoulos, I ; Gazetas, G ; Bransby, M. F ; Davies, M. C. R ; El Nahas, A</creatorcontrib><description>The three notorious earthquakes of 1999 in Turkey (Kocaeli and Düzce) and Taiwan (Chi-Chi), having offered numerous examples of surface fault rupturing underneath civil engineering structures, prompted increased interest in the subject. This paper develops a nonlinear finite-element methodology to study dip–slip (“normal” and “reverse”) fault rupture propagation through sand. The procedure is verified through successful Class A predictions of four centrifuge model tests. The validated methodology is then utilized in a parametric study of fault rupture propagation through sand. Emphasis is given to results of engineering significance, such as: (1) the location of fault outcropping; (2) the vertical displacement profile of the ground surface; and (3) the minimum fault offset at bedrock necessary for the rupture to reach the ground surface. The analysis shows that dip–slip faults refract at the soil–rock interface, initially increasing in dip. Normal faults may keep increasing their dip as they approach the ground surface, as a function of the peak friction angle φp and the angle of dilation ψp . In contrast, reverse faults tend to decrease in dip, as they emerge on the ground surface. For small values of the base fault offset, h , relative to the soil thickness, H , a dip–slip rupture cannot propagate all the way to the surface. The h∕H ratio required for outcropping is an increasing function of soil “ductility.” Reverse faults require significantly higher h∕H to outcrop, compared to normal faults. When the rupture outcrops, the height of the fault scrap, s , also depends on soil ductility.</description><identifier>ISSN: 1090-0241</identifier><identifier>EISSN: 1943-5606</identifier><identifier>DOI: 10.1061/(ASCE)1090-0241(2007)133:8(943)</identifier><language>eng</language><publisher>New York, NY: American Society of Civil Engineers</publisher><subject>Applied sciences ; Buildings. Public works ; Civil engineering ; Computation methods. Tables. Charts ; Earthquakes ; Exact sciences and technology ; Geotechnics ; Q1 ; Q3 ; Sand ; Seismic activity ; Soil ; Soil mechanics. Rocks mechanics ; Structural analysis. Stresses ; Structure-soil interaction ; Taiwan ; TECHNICAL PAPERS ; Turkey ; Turkey, Kocaeli</subject><ispartof>Journal of geotechnical and geoenvironmental engineering, 2007-08, Vol.133 (8), p.943-958</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a512t-87dac0dda4899c8c7677c87f8a4ff57942291e0f98542ebb62f7ec8072c2823</citedby><cites>FETCH-LOGICAL-a512t-87dac0dda4899c8c7677c87f8a4ff57942291e0f98542ebb62f7ec8072c2823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)1090-0241(2007)133:8(943)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)1090-0241(2007)133:8(943)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,75935,75943</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18951693$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Anastasopoulos, I</creatorcontrib><creatorcontrib>Gazetas, G</creatorcontrib><creatorcontrib>Bransby, M. F</creatorcontrib><creatorcontrib>Davies, M. C. R</creatorcontrib><creatorcontrib>El Nahas, A</creatorcontrib><title>Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments</title><title>Journal of geotechnical and geoenvironmental engineering</title><description>The three notorious earthquakes of 1999 in Turkey (Kocaeli and Düzce) and Taiwan (Chi-Chi), having offered numerous examples of surface fault rupturing underneath civil engineering structures, prompted increased interest in the subject. This paper develops a nonlinear finite-element methodology to study dip–slip (“normal” and “reverse”) fault rupture propagation through sand. The procedure is verified through successful Class A predictions of four centrifuge model tests. The validated methodology is then utilized in a parametric study of fault rupture propagation through sand. Emphasis is given to results of engineering significance, such as: (1) the location of fault outcropping; (2) the vertical displacement profile of the ground surface; and (3) the minimum fault offset at bedrock necessary for the rupture to reach the ground surface. The analysis shows that dip–slip faults refract at the soil–rock interface, initially increasing in dip. Normal faults may keep increasing their dip as they approach the ground surface, as a function of the peak friction angle φp and the angle of dilation ψp . In contrast, reverse faults tend to decrease in dip, as they emerge on the ground surface. For small values of the base fault offset, h , relative to the soil thickness, H , a dip–slip rupture cannot propagate all the way to the surface. The h∕H ratio required for outcropping is an increasing function of soil “ductility.” Reverse faults require significantly higher h∕H to outcrop, compared to normal faults. When the rupture outcrops, the height of the fault scrap, s , also depends on soil ductility.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Civil engineering</subject><subject>Computation methods. Tables. Charts</subject><subject>Earthquakes</subject><subject>Exact sciences and technology</subject><subject>Geotechnics</subject><subject>Q1</subject><subject>Q3</subject><subject>Sand</subject><subject>Seismic activity</subject><subject>Soil</subject><subject>Soil mechanics. Rocks mechanics</subject><subject>Structural analysis. Stresses</subject><subject>Structure-soil interaction</subject><subject>Taiwan</subject><subject>TECHNICAL PAPERS</subject><subject>Turkey</subject><subject>Turkey, Kocaeli</subject><issn>1090-0241</issn><issn>1943-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LxDAQhoso-PkfclF3D9VJmjbJHoRl2VVBUFzxGmKarJFuW5MW9N-bsn7gRU8TyDPvzPAkySmGMwwFPh9Nl7P5GIOAFAjFIwLAxjjLJnwkaDbeSvZwrGleQLEd31_cbrIfwgsAUOBkL1kvVF916L5vu94bdOebVq1U55oadc--6VfPaKnqcoIWrnadSeeVWZu6Q9NaVe_BBRQ_0aOqXPm7aRYh72y_Mmj-1hrvhq5wmOxYVQVz9FkPkuVi_jC7Sm9uL69n05tU5Zh0KWel0lCWinIhNNesYExzZrmi1uZMUEIENmAFzykxT08FscxoDoxowkl2kJxsUlvfvPYmdHLtgjZVpWrT9EFm8XjGoPgXJEAEJ5hGcPQniDnL4y6c8ohebFDtmxC8sbKNxyv_LjHIQZyUgzg5CJGDEDmIk1Gc5DIKiwHHn7NU0KqyXtXahZ8ULnJciIGbbLiIGfnS9D4qCd9T_h7yAZE5q4k</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Anastasopoulos, I</creator><creator>Gazetas, G</creator><creator>Bransby, M. F</creator><creator>Davies, M. C. R</creator><creator>El Nahas, A</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SM</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20070801</creationdate><title>Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments</title><author>Anastasopoulos, I ; Gazetas, G ; Bransby, M. F ; Davies, M. C. R ; El Nahas, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a512t-87dac0dda4899c8c7677c87f8a4ff57942291e0f98542ebb62f7ec8072c2823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Civil engineering</topic><topic>Computation methods. Tables. Charts</topic><topic>Earthquakes</topic><topic>Exact sciences and technology</topic><topic>Geotechnics</topic><topic>Q1</topic><topic>Q3</topic><topic>Sand</topic><topic>Seismic activity</topic><topic>Soil</topic><topic>Soil mechanics. Rocks mechanics</topic><topic>Structural analysis. Stresses</topic><topic>Structure-soil interaction</topic><topic>Taiwan</topic><topic>TECHNICAL PAPERS</topic><topic>Turkey</topic><topic>Turkey, Kocaeli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anastasopoulos, I</creatorcontrib><creatorcontrib>Gazetas, G</creatorcontrib><creatorcontrib>Bransby, M. F</creatorcontrib><creatorcontrib>Davies, M. C. R</creatorcontrib><creatorcontrib>El Nahas, A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of geotechnical and geoenvironmental engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anastasopoulos, I</au><au>Gazetas, G</au><au>Bransby, M. F</au><au>Davies, M. C. R</au><au>El Nahas, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments</atitle><jtitle>Journal of geotechnical and geoenvironmental engineering</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>133</volume><issue>8</issue><spage>943</spage><epage>958</epage><pages>943-958</pages><issn>1090-0241</issn><eissn>1943-5606</eissn><abstract>The three notorious earthquakes of 1999 in Turkey (Kocaeli and Düzce) and Taiwan (Chi-Chi), having offered numerous examples of surface fault rupturing underneath civil engineering structures, prompted increased interest in the subject. This paper develops a nonlinear finite-element methodology to study dip–slip (“normal” and “reverse”) fault rupture propagation through sand. The procedure is verified through successful Class A predictions of four centrifuge model tests. The validated methodology is then utilized in a parametric study of fault rupture propagation through sand. Emphasis is given to results of engineering significance, such as: (1) the location of fault outcropping; (2) the vertical displacement profile of the ground surface; and (3) the minimum fault offset at bedrock necessary for the rupture to reach the ground surface. The analysis shows that dip–slip faults refract at the soil–rock interface, initially increasing in dip. Normal faults may keep increasing their dip as they approach the ground surface, as a function of the peak friction angle φp and the angle of dilation ψp . In contrast, reverse faults tend to decrease in dip, as they emerge on the ground surface. For small values of the base fault offset, h , relative to the soil thickness, H , a dip–slip rupture cannot propagate all the way to the surface. The h∕H ratio required for outcropping is an increasing function of soil “ductility.” Reverse faults require significantly higher h∕H to outcrop, compared to normal faults. When the rupture outcrops, the height of the fault scrap, s , also depends on soil ductility.</abstract><cop>New York, NY</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)1090-0241(2007)133:8(943)</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1090-0241
ispartof Journal of geotechnical and geoenvironmental engineering, 2007-08, Vol.133 (8), p.943-958
issn 1090-0241
1943-5606
language eng
recordid cdi_proquest_miscellaneous_30047706
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Applied sciences
Buildings. Public works
Civil engineering
Computation methods. Tables. Charts
Earthquakes
Exact sciences and technology
Geotechnics
Q1
Q3
Sand
Seismic activity
Soil
Soil mechanics. Rocks mechanics
Structural analysis. Stresses
Structure-soil interaction
Taiwan
TECHNICAL PAPERS
Turkey
Turkey, Kocaeli
title Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Rupture%20Propagation%20through%20Sand:%20Finite-Element%20Analysis%20and%20Validation%20through%20Centrifuge%20Experiments&rft.jtitle=Journal%20of%20geotechnical%20and%20geoenvironmental%20engineering&rft.au=Anastasopoulos,%20I&rft.date=2007-08-01&rft.volume=133&rft.issue=8&rft.spage=943&rft.epage=958&rft.pages=943-958&rft.issn=1090-0241&rft.eissn=1943-5606&rft_id=info:doi/10.1061/(ASCE)1090-0241(2007)133:8(943)&rft_dat=%3Cproquest_cross%3E7520618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875854848&rft_id=info:pmid/&rfr_iscdi=true