Fault Rupture Propagation through Sand: Finite-Element Analysis and Validation through Centrifuge Experiments
The three notorious earthquakes of 1999 in Turkey (Kocaeli and Düzce) and Taiwan (Chi-Chi), having offered numerous examples of surface fault rupturing underneath civil engineering structures, prompted increased interest in the subject. This paper develops a nonlinear finite-element methodology to s...
Gespeichert in:
Veröffentlicht in: | Journal of geotechnical and geoenvironmental engineering 2007-08, Vol.133 (8), p.943-958 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The three notorious earthquakes of 1999 in Turkey (Kocaeli and Düzce) and Taiwan (Chi-Chi), having offered numerous examples of surface fault rupturing underneath civil engineering structures, prompted increased interest in the subject. This paper develops a nonlinear finite-element methodology to study dip–slip (“normal” and “reverse”) fault rupture propagation through sand. The procedure is verified through successful Class A predictions of four centrifuge model tests. The validated methodology is then utilized in a parametric study of fault rupture propagation through sand. Emphasis is given to results of engineering significance, such as: (1) the location of fault outcropping; (2) the vertical displacement profile of the ground surface; and (3) the minimum fault offset at bedrock necessary for the rupture to reach the ground surface. The analysis shows that dip–slip faults refract at the soil–rock interface, initially increasing in dip. Normal faults may keep increasing their dip as they approach the ground surface, as a function of the peak friction angle
φp
and the angle of dilation
ψp
. In contrast, reverse faults tend to decrease in dip, as they emerge on the ground surface. For small values of the base fault offset,
h
, relative to the soil thickness,
H
, a dip–slip rupture cannot propagate all the way to the surface. The
h∕H
ratio required for outcropping is an increasing function of soil “ductility.” Reverse faults require significantly higher
h∕H
to outcrop, compared to normal faults. When the rupture outcrops, the height of the fault scrap,
s
, also depends on soil ductility. |
---|---|
ISSN: | 1090-0241 1943-5606 |
DOI: | 10.1061/(ASCE)1090-0241(2007)133:8(943) |