Blockade of interleukin-13 signalling improves skin barrier function and biology in patients with moderate-to-severe atopic dermatitis

Interleukin (IL)-13 is a key driver of inflammation and barrier dysfunction in atopic dermatitis (AD). While there is robust evidence that tralokinumab - a monoclonal antibody that neutralizes IL-13 - reduces inflammation and clinical disease activity, less is known about its effects on barrier func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of dermatology (1951) 2024-08, Vol.191 (3), p.344-350
Hauptverfasser: Sander, Nicole, Stölzl, Dora, Fonfara, Melina, Hartmann, Jan, Harder, Inken, Suhrkamp, Ina, Jakaša, Ivone, van den Bogaard, Ellen, van Vlijmen-Willems, Ivonne, Szymczak, Silke, Rodriguez, Elke, Gerdes, Sascha, Weidinger, Stephan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interleukin (IL)-13 is a key driver of inflammation and barrier dysfunction in atopic dermatitis (AD). While there is robust evidence that tralokinumab - a monoclonal antibody that neutralizes IL-13 - reduces inflammation and clinical disease activity, less is known about its effects on barrier function.BACKGROUNDInterleukin (IL)-13 is a key driver of inflammation and barrier dysfunction in atopic dermatitis (AD). While there is robust evidence that tralokinumab - a monoclonal antibody that neutralizes IL-13 - reduces inflammation and clinical disease activity, less is known about its effects on barrier function.To characterize the effects of tralokinumab treatment on skin barrier function.OBJECTIVESTo characterize the effects of tralokinumab treatment on skin barrier function.Transepidermal water loss (TEWL), stratum corneum hydration (SCH), natural moisturizing factor content, histopathological characteristics, biomarker expression and microbiome composition were evaluated in lesional, nonlesional and sodium lauryl sulfate-irritated skin of 16 patients with AD over the course of 16 weeks of tralokinumab treatment.METHODSTransepidermal water loss (TEWL), stratum corneum hydration (SCH), natural moisturizing factor content, histopathological characteristics, biomarker expression and microbiome composition were evaluated in lesional, nonlesional and sodium lauryl sulfate-irritated skin of 16 patients with AD over the course of 16 weeks of tralokinumab treatment.All clinical severity scores decreased significantly over time. At week 16, mean TEWL in target lesions decreased by 33% (P = 0.01) and SCH increased by 58% (P = 0.004), along with a histological reduction in spongiosis (P = 0.003), keratin 16 expression and epidermal thickness (P = 0.001). In parallel, there was a significant decrease in several barrier dysfunction-associated and proinflammatory proteins such as fibronectin (P = 0.006), CCL17/TARC (P = 0.03) and IL-8 (P = 0.01), with significant changes seen as early as week 8. Total bacterial load and Staphylococcus aureus abundance were significantly reduced from week 2.RESULTSAll clinical severity scores decreased significantly over time. At week 16, mean TEWL in target lesions decreased by 33% (P = 0.01) and SCH increased by 58% (P = 0.004), along with a histological reduction in spongiosis (P = 0.003), keratin 16 expression and epidermal thickness (P = 0.001). In parallel, there was a significant decrease in several barrier dysfunction-associat
ISSN:0007-0963
1365-2133
1365-2133
DOI:10.1093/bjd/ljae138