Positivity and lower and upper solutions for fourth order boundary value problems

This paper is devoted to the study the boundary value problem { u ( 4 ) ( t ) = f ( t , u ( t ) ) for all  t ∈ I = [ 0 , 1 ] , u ( 0 ) = u ( 1 ) = u ″ ( 0 ) = u ″ ( 1 ) = 0 . We prove the existence of at least one, two or three solutions in the presence of a pair of, not necessarily ordered, lower a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2007-09, Vol.67 (5), p.1599-1612
Hauptverfasser: Cabada, Alberto, Ángel Cid, J., Sanchez, Luís
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to the study the boundary value problem { u ( 4 ) ( t ) = f ( t , u ( t ) ) for all  t ∈ I = [ 0 , 1 ] , u ( 0 ) = u ( 1 ) = u ″ ( 0 ) = u ″ ( 1 ) = 0 . We prove the existence of at least one, two or three solutions in the presence of a pair of, not necessarily ordered, lower and upper solutions. The proof follows from maximum principles related to the operator u ( 4 ) + M u and Amann’s three solutions theorem.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2006.08.002