Stability analysis for milling process
In this article, the stability of a milling process is studied by using a semi-discretization method. The model of the workpiece–tool system includes loss-of-contact effects between the workpiece and the tool and time-delay effects associated with the chip-thickness variation. In addition, feed-rate...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2007-08, Vol.49 (3), p.349-359 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, the stability of a milling process is studied by using a semi-discretization method. The model of the workpiece–tool system includes loss-of-contact effects between the workpiece and the tool and time-delay effects associated with the chip-thickness variation. In addition, feed-rate effects are also considered. The governing system of equations is a non-autonomous, delay-differential system with time-periodic coefficients. Stability of periodic orbits of this system is studied to predict the onset of chatter and numerical evidence is provided for period-doubling bifurcations and secondary Hopf bifurcations. Stability charts generated using the semi-discretization method are found to compare well with the corresponding results obtained through time-domain simulations. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-006-9127-8 |