MAP-Based Perceptual Modeling for Noisy Speech Recognition
This study presents a maximum a posteriori (MAP) based perceptual modeling approach to deal with the issue of recognition degradation in noisy environment. In this approach, MAP-based noise detection is first applied to identify the noise segment in an utterance. Subtractive-type enhancement algorit...
Gespeichert in:
Veröffentlicht in: | Journal of Information Science and Engineering 2006-09, Vol.22 (5), p.999-1013 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study presents a maximum a posteriori (MAP) based perceptual modeling approach to deal with the issue of recognition degradation in noisy environment. In this approach, MAP-based noise detection is first applied to identify the noise segment in an utterance. Subtractive-type enhancement algorithm with masking properties of the human auditory system is then used to reduce the noise effect. Finally, MAP-based incremental noise model adaptation is developed to overcome the model inconsistencies between training and testing environments. For performance evaluation of the proposed approach, a Mandarin keyword recognition system was constructed. The experimental results show that the proposed approach achieves a better recognition rate compared to the audible noise suppression (ANS) and parallel model combination (PMC) methods. |
---|---|
ISSN: | 1016-2364 |
DOI: | 10.6688/JISE.2006.22.5.1 |