Application of microsize light-emitting diode structure for monolithic optoelectronic integrated circuits

A Si/III–V–N alloys/Si structure was grown on a Si substrate by solid‐source molecular beam epitaxy (SSMBE) with an rf plasma nitrogen source and electron‐beam (EB) evaporator. A two‐dimensional (2D) growth mode was maintained during the growth of all layers. High‐resolution X‐ray diffraction (HRXRD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2007-06, Vol.204 (6), p.2082-2086
Hauptverfasser: Moon, S. Y., Yonezu, H., Furukawa, Y., Morisaki, Y., Yamada, S., Wakahara, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2086
container_issue 6
container_start_page 2082
container_title Physica status solidi. A, Applications and materials science
container_volume 204
creator Moon, S. Y.
Yonezu, H.
Furukawa, Y.
Morisaki, Y.
Yamada, S.
Wakahara, A.
description A Si/III–V–N alloys/Si structure was grown on a Si substrate by solid‐source molecular beam epitaxy (SSMBE) with an rf plasma nitrogen source and electron‐beam (EB) evaporator. A two‐dimensional (2D) growth mode was maintained during the growth of all layers. High‐resolution X‐ray diffraction (HRXRD) revealed that the structure had a small lattice mismatch to the Si substrate. InGaPN/GaPN double‐heterostructure (DH) light‐emitting diodes (LEDs) were fabricated on Si/III–V–N alloys/Si structure. The various sized LEDs were fabricated to put into the MOSFET for monolithic optoelectronic integrated circuits (OEIC). The luminescence properties of LEDs were evaluated by electroluminescence (EL). A double emission peak from all LED samples was observed at about 642 nm and 695 nm at room temperature (RT). As injection current increased, the emission peak wavelength changed from the peak wavelength of the InGaPN layer to that of the GaPN layer, likely due to carrier overflow of the active layer. A simplified fabrication process for the microsize LED of the unit circuit was proposed. The LEDs with emission areas from 5 × 5 μm2 to 20 × 20 μm2 were fabricated. The LED with an emission area of 5 × 5 μm2 can be applied to an optical device of a monolithic OEIC. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pssa.200674774
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29991965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29991965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4544-fbaa17aee2dbf278ad184d23acc28d7e12d007be49a31acf887918c45ff9c6123</originalsourceid><addsrcrecordid>eNqFkEFP3DAQhSPUSqWUa8--lFsW28nG9nFBhUVaARJFSFwsrzNehjpxajui9Nc3q0Xb3jjNjPS-NzOvKL4yOmOU8tMhJTPjlDaiFqI-KA6ZbHjZVEx92PeUfio-p_RMaT2vBTsscDEMHq3JGHoSHOnQxpDwDxCPm6dcQoc5Y78hLYYWSMpxtHmMQFyIpAt98Jif0JIw5AAebI6hn0bsM2yiydASi9GOmNOX4qMzPsHxWz0q7i--_zhflquby6vzxaq000l16dbGMGEAeLt2XEjTMlm3vDLWctkKYLylVKyhVqZixjophWJyYp1TtmG8OipOdr5DDL9GSFl3mCx4b3oIY9JcKcVUM5-Es51w-3GK4PQQsTPxVTOqt4nqbaJ6n-gEfHtzNska76LpLaZ_lJS1FBWbdGqne0EPr--46tu7u8X_O8odiynD7z1r4k_diErM9cP1pW6Wj3R5drHSovoL4paazQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29991965</pqid></control><display><type>article</type><title>Application of microsize light-emitting diode structure for monolithic optoelectronic integrated circuits</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Moon, S. Y. ; Yonezu, H. ; Furukawa, Y. ; Morisaki, Y. ; Yamada, S. ; Wakahara, A.</creator><creatorcontrib>Moon, S. Y. ; Yonezu, H. ; Furukawa, Y. ; Morisaki, Y. ; Yamada, S. ; Wakahara, A.</creatorcontrib><description>A Si/III–V–N alloys/Si structure was grown on a Si substrate by solid‐source molecular beam epitaxy (SSMBE) with an rf plasma nitrogen source and electron‐beam (EB) evaporator. A two‐dimensional (2D) growth mode was maintained during the growth of all layers. High‐resolution X‐ray diffraction (HRXRD) revealed that the structure had a small lattice mismatch to the Si substrate. InGaPN/GaPN double‐heterostructure (DH) light‐emitting diodes (LEDs) were fabricated on Si/III–V–N alloys/Si structure. The various sized LEDs were fabricated to put into the MOSFET for monolithic optoelectronic integrated circuits (OEIC). The luminescence properties of LEDs were evaluated by electroluminescence (EL). A double emission peak from all LED samples was observed at about 642 nm and 695 nm at room temperature (RT). As injection current increased, the emission peak wavelength changed from the peak wavelength of the InGaPN layer to that of the GaPN layer, likely due to carrier overflow of the active layer. A simplified fabrication process for the microsize LED of the unit circuit was proposed. The LEDs with emission areas from 5 × 5 μm2 to 20 × 20 μm2 were fabricated. The LED with an emission area of 5 × 5 μm2 can be applied to an optical device of a monolithic OEIC. (© 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 1862-6300</identifier><identifier>ISSN: 0031-8965</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.200674774</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>42.82.−m ; 78.55.Cr ; 78.60.Fi ; 81.05.Ea ; 81.15.Hi ; 85.60.Jb ; Applied sciences ; Circuit properties ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Miscellaneous ; Optoelectronic devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Physica status solidi. A, Applications and materials science, 2007-06, Vol.204 (6), p.2082-2086</ispartof><rights>Copyright © 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4544-fbaa17aee2dbf278ad184d23acc28d7e12d007be49a31acf887918c45ff9c6123</citedby><cites>FETCH-LOGICAL-c4544-fbaa17aee2dbf278ad184d23acc28d7e12d007be49a31acf887918c45ff9c6123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.200674774$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.200674774$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,1412,23911,23912,25121,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18848731$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Moon, S. Y.</creatorcontrib><creatorcontrib>Yonezu, H.</creatorcontrib><creatorcontrib>Furukawa, Y.</creatorcontrib><creatorcontrib>Morisaki, Y.</creatorcontrib><creatorcontrib>Yamada, S.</creatorcontrib><creatorcontrib>Wakahara, A.</creatorcontrib><title>Application of microsize light-emitting diode structure for monolithic optoelectronic integrated circuits</title><title>Physica status solidi. A, Applications and materials science</title><addtitle>phys. stat. sol. (a)</addtitle><description>A Si/III–V–N alloys/Si structure was grown on a Si substrate by solid‐source molecular beam epitaxy (SSMBE) with an rf plasma nitrogen source and electron‐beam (EB) evaporator. A two‐dimensional (2D) growth mode was maintained during the growth of all layers. High‐resolution X‐ray diffraction (HRXRD) revealed that the structure had a small lattice mismatch to the Si substrate. InGaPN/GaPN double‐heterostructure (DH) light‐emitting diodes (LEDs) were fabricated on Si/III–V–N alloys/Si structure. The various sized LEDs were fabricated to put into the MOSFET for monolithic optoelectronic integrated circuits (OEIC). The luminescence properties of LEDs were evaluated by electroluminescence (EL). A double emission peak from all LED samples was observed at about 642 nm and 695 nm at room temperature (RT). As injection current increased, the emission peak wavelength changed from the peak wavelength of the InGaPN layer to that of the GaPN layer, likely due to carrier overflow of the active layer. A simplified fabrication process for the microsize LED of the unit circuit was proposed. The LEDs with emission areas from 5 × 5 μm2 to 20 × 20 μm2 were fabricated. The LED with an emission area of 5 × 5 μm2 can be applied to an optical device of a monolithic OEIC. (© 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>42.82.−m</subject><subject>78.55.Cr</subject><subject>78.60.Fi</subject><subject>81.05.Ea</subject><subject>81.15.Hi</subject><subject>85.60.Jb</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Miscellaneous</subject><subject>Optoelectronic devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>1862-6300</issn><issn>0031-8965</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkEFP3DAQhSPUSqWUa8--lFsW28nG9nFBhUVaARJFSFwsrzNehjpxajui9Nc3q0Xb3jjNjPS-NzOvKL4yOmOU8tMhJTPjlDaiFqI-KA6ZbHjZVEx92PeUfio-p_RMaT2vBTsscDEMHq3JGHoSHOnQxpDwDxCPm6dcQoc5Y78hLYYWSMpxtHmMQFyIpAt98Jif0JIw5AAebI6hn0bsM2yiydASi9GOmNOX4qMzPsHxWz0q7i--_zhflquby6vzxaq000l16dbGMGEAeLt2XEjTMlm3vDLWctkKYLylVKyhVqZixjophWJyYp1TtmG8OipOdr5DDL9GSFl3mCx4b3oIY9JcKcVUM5-Es51w-3GK4PQQsTPxVTOqt4nqbaJ6n-gEfHtzNska76LpLaZ_lJS1FBWbdGqne0EPr--46tu7u8X_O8odiynD7z1r4k_diErM9cP1pW6Wj3R5drHSovoL4paazQ</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Moon, S. Y.</creator><creator>Yonezu, H.</creator><creator>Furukawa, Y.</creator><creator>Morisaki, Y.</creator><creator>Yamada, S.</creator><creator>Wakahara, A.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200706</creationdate><title>Application of microsize light-emitting diode structure for monolithic optoelectronic integrated circuits</title><author>Moon, S. Y. ; Yonezu, H. ; Furukawa, Y. ; Morisaki, Y. ; Yamada, S. ; Wakahara, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4544-fbaa17aee2dbf278ad184d23acc28d7e12d007be49a31acf887918c45ff9c6123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>42.82.−m</topic><topic>78.55.Cr</topic><topic>78.60.Fi</topic><topic>81.05.Ea</topic><topic>81.15.Hi</topic><topic>85.60.Jb</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Miscellaneous</topic><topic>Optoelectronic devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moon, S. Y.</creatorcontrib><creatorcontrib>Yonezu, H.</creatorcontrib><creatorcontrib>Furukawa, Y.</creatorcontrib><creatorcontrib>Morisaki, Y.</creatorcontrib><creatorcontrib>Yamada, S.</creatorcontrib><creatorcontrib>Wakahara, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moon, S. Y.</au><au>Yonezu, H.</au><au>Furukawa, Y.</au><au>Morisaki, Y.</au><au>Yamada, S.</au><au>Wakahara, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of microsize light-emitting diode structure for monolithic optoelectronic integrated circuits</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><addtitle>phys. stat. sol. (a)</addtitle><date>2007-06</date><risdate>2007</risdate><volume>204</volume><issue>6</issue><spage>2082</spage><epage>2086</epage><pages>2082-2086</pages><issn>1862-6300</issn><issn>0031-8965</issn><eissn>1862-6319</eissn><abstract>A Si/III–V–N alloys/Si structure was grown on a Si substrate by solid‐source molecular beam epitaxy (SSMBE) with an rf plasma nitrogen source and electron‐beam (EB) evaporator. A two‐dimensional (2D) growth mode was maintained during the growth of all layers. High‐resolution X‐ray diffraction (HRXRD) revealed that the structure had a small lattice mismatch to the Si substrate. InGaPN/GaPN double‐heterostructure (DH) light‐emitting diodes (LEDs) were fabricated on Si/III–V–N alloys/Si structure. The various sized LEDs were fabricated to put into the MOSFET for monolithic optoelectronic integrated circuits (OEIC). The luminescence properties of LEDs were evaluated by electroluminescence (EL). A double emission peak from all LED samples was observed at about 642 nm and 695 nm at room temperature (RT). As injection current increased, the emission peak wavelength changed from the peak wavelength of the InGaPN layer to that of the GaPN layer, likely due to carrier overflow of the active layer. A simplified fabrication process for the microsize LED of the unit circuit was proposed. The LEDs with emission areas from 5 × 5 μm2 to 20 × 20 μm2 were fabricated. The LED with an emission area of 5 × 5 μm2 can be applied to an optical device of a monolithic OEIC. (© 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssa.200674774</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2007-06, Vol.204 (6), p.2082-2086
issn 1862-6300
0031-8965
1862-6319
language eng
recordid cdi_proquest_miscellaneous_29991965
source Wiley Online Library Journals Frontfile Complete
subjects 42.82.−m
78.55.Cr
78.60.Fi
81.05.Ea
81.15.Hi
85.60.Jb
Applied sciences
Circuit properties
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Exact sciences and technology
Miscellaneous
Optoelectronic devices
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title Application of microsize light-emitting diode structure for monolithic optoelectronic integrated circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20microsize%20light-emitting%20diode%20structure%20for%20monolithic%20optoelectronic%20integrated%20circuits&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Moon,%20S.%20Y.&rft.date=2007-06&rft.volume=204&rft.issue=6&rft.spage=2082&rft.epage=2086&rft.pages=2082-2086&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.200674774&rft_dat=%3Cproquest_cross%3E29991965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29991965&rft_id=info:pmid/&rfr_iscdi=true