Understanding the Biases of Generalised Recombination: Part II

This is the second part of a two-part paper where we propose, model theoretically and study a general notion of recombination for fixed-length strings where homologous recombination, inversion, gene duplication, gene deletion, diploidy and more are just special cases. In Part I, we derived both micr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolutionary computation 2007-03, Vol.15 (1), p.95-131
Hauptverfasser: Poli, Riccardo, Stephens, Christopher R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This is the second part of a two-part paper where we propose, model theoretically and study a general notion of recombination for fixed-length strings where homologous recombination, inversion, gene duplication, gene deletion, diploidy and more are just special cases. In Part I, we derived both microscopic and coarse-grained evolution equations for strings and schemata for a selecto-recombinative GA using generalised recombination, and we explained the hierarchical nature of the schema evolution equations. In this part, we provide a variety of fixed points for evolution in the case where recombination is used alone, thereby generalising Geiringer's theorem. In addition, we numerically integrate the infinite-population schema equations for some interesting problems, where selection and recombination are used together to illustrate how these operators interact. Finally, to assess by how much genetic drift can make a system deviate from the infinite-population-model predictions we discuss the results of real GA runs for the same model problems with generalised recombination, selection and finite populations of different sizes.
ISSN:1063-6560
1530-9304
DOI:10.1162/evco.2007.15.1.95