Existence and nonexistence of global positive solutions for the evolution P-Laplacian equations in exterior domains

This paper deals with the existence and nonexistence of global positive solutions for two evolution P-Laplacian equations in exterior domains with inhomogeneous boundary conditions. We demonstrate that q c = n ( p − 1 ) / ( n − p ) is its critical exponent provided 2 n / ( n + 1 ) < p < n . Fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2007-08, Vol.67 (3), p.901-916
1. Verfasser: Zeng, Xianzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 916
container_issue 3
container_start_page 901
container_title Nonlinear analysis
container_volume 67
creator Zeng, Xianzhong
description This paper deals with the existence and nonexistence of global positive solutions for two evolution P-Laplacian equations in exterior domains with inhomogeneous boundary conditions. We demonstrate that q c = n ( p − 1 ) / ( n − p ) is its critical exponent provided 2 n / ( n + 1 ) < p < n . Furthermore, we prove that if max { 1 , p − 1 } < q ≤ q c , then every positive solution of the equations blows up in finite time; whereas for q > q c , the equations admit the global positive solutions for some boundary value f ( x ) and some initial data u 0 ( x ) . We also demonstrate that every positive solution of the equations blows up in finite time provided n ≤ p .
doi_str_mv 10.1016/j.na.2006.06.048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29984410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X06003646</els_id><sourcerecordid>29984410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-dc6b9f4e284eea39350f764a7c04dc63ecb069a908bde0769a78781c43aad7ca3</originalsourceid><addsrcrecordid>eNp1kE1rGzEQhkVJoE7Se4-6tLd1pZVWq80thKQpGNJDA72JsXa2lVlLjmZtkn9fLTbpKTAwX8_MMC9jn6VYSiHNt80ywrIWwixn0_YDW0jbqqqpZXPGFkKZumq0-f2RXRBthBCyVWbB6O4l0ITRI4fY85givhXSwP-MaQ0j3yUKUzggpzTup5Ai8SFlPv1FjodTif-sVrAbwQeIHJ_3cORCSV4mzKHwfdpCiHTFzgcYCT-d_CV7ur_7dftQrR6__7i9WVVeNc1U9d6su0FjbTUiqE41YmiNhtYLXXoK_VqYDjph1z2KtoStba30WgH0rQd1yb4e9-5yet4jTW4byOM4QsS0J1d3ndVaigKKI-hzIso4uF0OW8ivTgo3q-s2LoKb1XWzaVtGvpx2A3kYhwzRB_o_V6S32prCXR85LI8eAmZHPszq9iGjn1yfwvtH_gGnQpG7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29984410</pqid></control><display><type>article</type><title>Existence and nonexistence of global positive solutions for the evolution P-Laplacian equations in exterior domains</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zeng, Xianzhong</creator><creatorcontrib>Zeng, Xianzhong</creatorcontrib><description>This paper deals with the existence and nonexistence of global positive solutions for two evolution P-Laplacian equations in exterior domains with inhomogeneous boundary conditions. We demonstrate that q c = n ( p − 1 ) / ( n − p ) is its critical exponent provided 2 n / ( n + 1 ) &lt; p &lt; n . Furthermore, we prove that if max { 1 , p − 1 } &lt; q ≤ q c , then every positive solution of the equations blows up in finite time; whereas for q &gt; q c , the equations admit the global positive solutions for some boundary value f ( x ) and some initial data u 0 ( x ) . We also demonstrate that every positive solution of the equations blows up in finite time provided n ≤ p .</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2006.06.048</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Blow-up ; Critical exponent ; Exact sciences and technology ; Exterior domain ; Global analysis, analysis on manifolds ; Global existence ; Inhomogeneous boundary conditions ; Mathematical analysis ; Mathematics ; Partial differential equations ; Sciences and techniques of general use ; The evolution P-Laplacian equations ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Nonlinear analysis, 2007-08, Vol.67 (3), p.901-916</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-dc6b9f4e284eea39350f764a7c04dc63ecb069a908bde0769a78781c43aad7ca3</citedby><cites>FETCH-LOGICAL-c355t-dc6b9f4e284eea39350f764a7c04dc63ecb069a908bde0769a78781c43aad7ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2006.06.048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18738486$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Xianzhong</creatorcontrib><title>Existence and nonexistence of global positive solutions for the evolution P-Laplacian equations in exterior domains</title><title>Nonlinear analysis</title><description>This paper deals with the existence and nonexistence of global positive solutions for two evolution P-Laplacian equations in exterior domains with inhomogeneous boundary conditions. We demonstrate that q c = n ( p − 1 ) / ( n − p ) is its critical exponent provided 2 n / ( n + 1 ) &lt; p &lt; n . Furthermore, we prove that if max { 1 , p − 1 } &lt; q ≤ q c , then every positive solution of the equations blows up in finite time; whereas for q &gt; q c , the equations admit the global positive solutions for some boundary value f ( x ) and some initial data u 0 ( x ) . We also demonstrate that every positive solution of the equations blows up in finite time provided n ≤ p .</description><subject>Blow-up</subject><subject>Critical exponent</subject><subject>Exact sciences and technology</subject><subject>Exterior domain</subject><subject>Global analysis, analysis on manifolds</subject><subject>Global existence</subject><subject>Inhomogeneous boundary conditions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>The evolution P-Laplacian equations</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kE1rGzEQhkVJoE7Se4-6tLd1pZVWq80thKQpGNJDA72JsXa2lVlLjmZtkn9fLTbpKTAwX8_MMC9jn6VYSiHNt80ywrIWwixn0_YDW0jbqqqpZXPGFkKZumq0-f2RXRBthBCyVWbB6O4l0ITRI4fY85givhXSwP-MaQ0j3yUKUzggpzTup5Ai8SFlPv1FjodTif-sVrAbwQeIHJ_3cORCSV4mzKHwfdpCiHTFzgcYCT-d_CV7ur_7dftQrR6__7i9WVVeNc1U9d6su0FjbTUiqE41YmiNhtYLXXoK_VqYDjph1z2KtoStba30WgH0rQd1yb4e9-5yet4jTW4byOM4QsS0J1d3ndVaigKKI-hzIso4uF0OW8ivTgo3q-s2LoKb1XWzaVtGvpx2A3kYhwzRB_o_V6S32prCXR85LI8eAmZHPszq9iGjn1yfwvtH_gGnQpG7</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Zeng, Xianzhong</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070801</creationdate><title>Existence and nonexistence of global positive solutions for the evolution P-Laplacian equations in exterior domains</title><author>Zeng, Xianzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-dc6b9f4e284eea39350f764a7c04dc63ecb069a908bde0769a78781c43aad7ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Blow-up</topic><topic>Critical exponent</topic><topic>Exact sciences and technology</topic><topic>Exterior domain</topic><topic>Global analysis, analysis on manifolds</topic><topic>Global existence</topic><topic>Inhomogeneous boundary conditions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>The evolution P-Laplacian equations</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Xianzhong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Xianzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and nonexistence of global positive solutions for the evolution P-Laplacian equations in exterior domains</atitle><jtitle>Nonlinear analysis</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>67</volume><issue>3</issue><spage>901</spage><epage>916</epage><pages>901-916</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>This paper deals with the existence and nonexistence of global positive solutions for two evolution P-Laplacian equations in exterior domains with inhomogeneous boundary conditions. We demonstrate that q c = n ( p − 1 ) / ( n − p ) is its critical exponent provided 2 n / ( n + 1 ) &lt; p &lt; n . Furthermore, we prove that if max { 1 , p − 1 } &lt; q ≤ q c , then every positive solution of the equations blows up in finite time; whereas for q &gt; q c , the equations admit the global positive solutions for some boundary value f ( x ) and some initial data u 0 ( x ) . We also demonstrate that every positive solution of the equations blows up in finite time provided n ≤ p .</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2006.06.048</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2007-08, Vol.67 (3), p.901-916
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_29984410
source Access via ScienceDirect (Elsevier)
subjects Blow-up
Critical exponent
Exact sciences and technology
Exterior domain
Global analysis, analysis on manifolds
Global existence
Inhomogeneous boundary conditions
Mathematical analysis
Mathematics
Partial differential equations
Sciences and techniques of general use
The evolution P-Laplacian equations
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Existence and nonexistence of global positive solutions for the evolution P-Laplacian equations in exterior domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A48%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20nonexistence%20of%20global%20positive%20solutions%20for%20the%20evolution%20P-Laplacian%20equations%20in%20exterior%20domains&rft.jtitle=Nonlinear%20analysis&rft.au=Zeng,%20Xianzhong&rft.date=2007-08-01&rft.volume=67&rft.issue=3&rft.spage=901&rft.epage=916&rft.pages=901-916&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2006.06.048&rft_dat=%3Cproquest_cross%3E29984410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29984410&rft_id=info:pmid/&rft_els_id=S0362546X06003646&rfr_iscdi=true