Existence and nonexistence of global positive solutions for the evolution P-Laplacian equations in exterior domains

This paper deals with the existence and nonexistence of global positive solutions for two evolution P-Laplacian equations in exterior domains with inhomogeneous boundary conditions. We demonstrate that q c = n ( p − 1 ) / ( n − p ) is its critical exponent provided 2 n / ( n + 1 ) < p < n . Fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2007-08, Vol.67 (3), p.901-916
1. Verfasser: Zeng, Xianzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the existence and nonexistence of global positive solutions for two evolution P-Laplacian equations in exterior domains with inhomogeneous boundary conditions. We demonstrate that q c = n ( p − 1 ) / ( n − p ) is its critical exponent provided 2 n / ( n + 1 ) < p < n . Furthermore, we prove that if max { 1 , p − 1 } < q ≤ q c , then every positive solution of the equations blows up in finite time; whereas for q > q c , the equations admit the global positive solutions for some boundary value f ( x ) and some initial data u 0 ( x ) . We also demonstrate that every positive solution of the equations blows up in finite time provided n ≤ p .
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2006.06.048