Existence and nonexistence of global positive solutions for the evolution P-Laplacian equations in exterior domains
This paper deals with the existence and nonexistence of global positive solutions for two evolution P-Laplacian equations in exterior domains with inhomogeneous boundary conditions. We demonstrate that q c = n ( p − 1 ) / ( n − p ) is its critical exponent provided 2 n / ( n + 1 ) < p < n . Fu...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2007-08, Vol.67 (3), p.901-916 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the existence and nonexistence of global positive solutions for two evolution P-Laplacian equations in exterior domains with inhomogeneous boundary conditions. We demonstrate that
q
c
=
n
(
p
−
1
)
/
(
n
−
p
)
is its critical exponent provided
2
n
/
(
n
+
1
)
<
p
<
n
. Furthermore, we prove that if
max
{
1
,
p
−
1
}
<
q
≤
q
c
, then every positive solution of the equations blows up in finite time; whereas for
q
>
q
c
, the equations admit the global positive solutions for some boundary value
f
(
x
)
and some initial data
u
0
(
x
)
. We also demonstrate that every positive solution of the equations blows up in finite time provided
n
≤
p
. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2006.06.048 |