Transcendence of numbers with an expansion in a subclass of complexity 2N +1
We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let {symbol} be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it...
Gespeichert in:
Veröffentlicht in: | Informatique théorique et applications (Imprimé) 2006-07, Vol.40 (3), p.459-471 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 471 |
---|---|
container_issue | 3 |
container_start_page | 459 |
container_title | Informatique théorique et applications (Imprimé) |
container_volume | 40 |
creator | Karki, Tomi |
description | We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let {symbol} be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it belongs to Subclass I and the number is known to be transcendental. We prove the transcendence of numbers with expansions in the subclasses II and III. |
doi_str_mv | 10.1051/ita:2006034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_29972271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29972271</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-7c58f159986a016374f97b881f4112c4674ef11fefc546ce983c5dd6bb61ccaa3</originalsourceid><addsrcrecordid>eNotz8tKxDAYBeAgCo6jK18gG91INX_ucSfDeIGimxHclTSTYKRNa9PizNtbcc7mbD4OHIQugdwCEXAXR3tPCZGE8SO0AGpIwbT4OEYLYrQumBL8FJ3l_EUIgTkLVG4Gm7LzaeuT87gLOE1t7YeMf-L4iW3CftfPInYJx4QtzlPtGpvzH3Vd2zd-F8c9pq_4Bs7RSbBN9heHXqL3x_Vm9VyUb08vq4ey6KlgY6Gc0AGEMVpaApIpHoyqtYbAAajjUnEfAIIPTnDpvNHMie1W1rUE56xlS3T9v9sP3ffk81i1cf7QNDb5bsoVNUZRqmCGVwdos7NNmL-6mKt-iK0d9hVoMJxwwn4BmWBcvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29972271</pqid></control><display><type>article</type><title>Transcendence of numbers with an expansion in a subclass of complexity 2N +1</title><source>NUMDAM</source><creator>Karki, Tomi</creator><creatorcontrib>Karki, Tomi</creatorcontrib><description>We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let {symbol} be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it belongs to Subclass I and the number is known to be transcendental. We prove the transcendence of numbers with expansions in the subclasses II and III.</description><identifier>ISSN: 0988-3754</identifier><identifier>EISSN: 1290-385X</identifier><identifier>DOI: 10.1051/ita:2006034</identifier><identifier>CODEN: RITAE4</identifier><language>eng</language><publisher>Paris: EDP Sciences</publisher><subject>Algebra ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Information retrieval. Graph ; Mathematics ; Number theory ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Informatique théorique et applications (Imprimé), 2006-07, Vol.40 (3), p.459-471</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18194040$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Karki, Tomi</creatorcontrib><title>Transcendence of numbers with an expansion in a subclass of complexity 2N +1</title><title>Informatique théorique et applications (Imprimé)</title><description>We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let {symbol} be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it belongs to Subclass I and the number is known to be transcendental. We prove the transcendence of numbers with expansions in the subclasses II and III.</description><subject>Algebra</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information retrieval. Graph</subject><subject>Mathematics</subject><subject>Number theory</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0988-3754</issn><issn>1290-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNotz8tKxDAYBeAgCo6jK18gG91INX_ucSfDeIGimxHclTSTYKRNa9PizNtbcc7mbD4OHIQugdwCEXAXR3tPCZGE8SO0AGpIwbT4OEYLYrQumBL8FJ3l_EUIgTkLVG4Gm7LzaeuT87gLOE1t7YeMf-L4iW3CftfPInYJx4QtzlPtGpvzH3Vd2zd-F8c9pq_4Bs7RSbBN9heHXqL3x_Vm9VyUb08vq4ey6KlgY6Gc0AGEMVpaApIpHoyqtYbAAajjUnEfAIIPTnDpvNHMie1W1rUE56xlS3T9v9sP3ffk81i1cf7QNDb5bsoVNUZRqmCGVwdos7NNmL-6mKt-iK0d9hVoMJxwwn4BmWBcvQ</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Karki, Tomi</creator><general>EDP Sciences</general><scope>IQODW</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060701</creationdate><title>Transcendence of numbers with an expansion in a subclass of complexity 2N +1</title><author>Karki, Tomi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-7c58f159986a016374f97b881f4112c4674ef11fefc546ce983c5dd6bb61ccaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algebra</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information retrieval. Graph</topic><topic>Mathematics</topic><topic>Number theory</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karki, Tomi</creatorcontrib><collection>Pascal-Francis</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Informatique théorique et applications (Imprimé)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karki, Tomi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcendence of numbers with an expansion in a subclass of complexity 2N +1</atitle><jtitle>Informatique théorique et applications (Imprimé)</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>40</volume><issue>3</issue><spage>459</spage><epage>471</epage><pages>459-471</pages><issn>0988-3754</issn><eissn>1290-385X</eissn><coden>RITAE4</coden><abstract>We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let {symbol} be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it belongs to Subclass I and the number is known to be transcendental. We prove the transcendence of numbers with expansions in the subclasses II and III.</abstract><cop>Paris</cop><pub>EDP Sciences</pub><doi>10.1051/ita:2006034</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0988-3754 |
ispartof | Informatique théorique et applications (Imprimé), 2006-07, Vol.40 (3), p.459-471 |
issn | 0988-3754 1290-385X |
language | eng |
recordid | cdi_proquest_miscellaneous_29972271 |
source | NUMDAM |
subjects | Algebra Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Exact sciences and technology Information retrieval. Graph Mathematics Number theory Sciences and techniques of general use Theoretical computing |
title | Transcendence of numbers with an expansion in a subclass of complexity 2N +1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcendence%20of%20numbers%20with%20an%20expansion%20in%20a%20subclass%20of%20complexity%202N%20+1&rft.jtitle=Informatique%20th%C3%A9orique%20et%20applications%20(Imprim%C3%A9)&rft.au=Karki,%20Tomi&rft.date=2006-07-01&rft.volume=40&rft.issue=3&rft.spage=459&rft.epage=471&rft.pages=459-471&rft.issn=0988-3754&rft.eissn=1290-385X&rft.coden=RITAE4&rft_id=info:doi/10.1051/ita:2006034&rft_dat=%3Cproquest_pasca%3E29972271%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29972271&rft_id=info:pmid/&rfr_iscdi=true |