Transcendence of numbers with an expansion in a subclass of complexity 2N +1

We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let {symbol} be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Informatique théorique et applications (Imprimé) 2006-07, Vol.40 (3), p.459-471
1. Verfasser: Karki, Tomi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 471
container_issue 3
container_start_page 459
container_title Informatique théorique et applications (Imprimé)
container_volume 40
creator Karki, Tomi
description We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let {symbol} be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it belongs to Subclass I and the number is known to be transcendental. We prove the transcendence of numbers with expansions in the subclasses II and III.
doi_str_mv 10.1051/ita:2006034
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_29972271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29972271</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-7c58f159986a016374f97b881f4112c4674ef11fefc546ce983c5dd6bb61ccaa3</originalsourceid><addsrcrecordid>eNotz8tKxDAYBeAgCo6jK18gG91INX_ucSfDeIGimxHclTSTYKRNa9PizNtbcc7mbD4OHIQugdwCEXAXR3tPCZGE8SO0AGpIwbT4OEYLYrQumBL8FJ3l_EUIgTkLVG4Gm7LzaeuT87gLOE1t7YeMf-L4iW3CftfPInYJx4QtzlPtGpvzH3Vd2zd-F8c9pq_4Bs7RSbBN9heHXqL3x_Vm9VyUb08vq4ey6KlgY6Gc0AGEMVpaApIpHoyqtYbAAajjUnEfAIIPTnDpvNHMie1W1rUE56xlS3T9v9sP3ffk81i1cf7QNDb5bsoVNUZRqmCGVwdos7NNmL-6mKt-iK0d9hVoMJxwwn4BmWBcvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29972271</pqid></control><display><type>article</type><title>Transcendence of numbers with an expansion in a subclass of complexity 2N +1</title><source>NUMDAM</source><creator>Karki, Tomi</creator><creatorcontrib>Karki, Tomi</creatorcontrib><description>We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let {symbol} be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it belongs to Subclass I and the number is known to be transcendental. We prove the transcendence of numbers with expansions in the subclasses II and III.</description><identifier>ISSN: 0988-3754</identifier><identifier>EISSN: 1290-385X</identifier><identifier>DOI: 10.1051/ita:2006034</identifier><identifier>CODEN: RITAE4</identifier><language>eng</language><publisher>Paris: EDP Sciences</publisher><subject>Algebra ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Information retrieval. Graph ; Mathematics ; Number theory ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Informatique théorique et applications (Imprimé), 2006-07, Vol.40 (3), p.459-471</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18194040$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Karki, Tomi</creatorcontrib><title>Transcendence of numbers with an expansion in a subclass of complexity 2N +1</title><title>Informatique théorique et applications (Imprimé)</title><description>We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let {symbol} be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it belongs to Subclass I and the number is known to be transcendental. We prove the transcendence of numbers with expansions in the subclasses II and III.</description><subject>Algebra</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information retrieval. Graph</subject><subject>Mathematics</subject><subject>Number theory</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0988-3754</issn><issn>1290-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNotz8tKxDAYBeAgCo6jK18gG91INX_ucSfDeIGimxHclTSTYKRNa9PizNtbcc7mbD4OHIQugdwCEXAXR3tPCZGE8SO0AGpIwbT4OEYLYrQumBL8FJ3l_EUIgTkLVG4Gm7LzaeuT87gLOE1t7YeMf-L4iW3CftfPInYJx4QtzlPtGpvzH3Vd2zd-F8c9pq_4Bs7RSbBN9heHXqL3x_Vm9VyUb08vq4ey6KlgY6Gc0AGEMVpaApIpHoyqtYbAAajjUnEfAIIPTnDpvNHMie1W1rUE56xlS3T9v9sP3ffk81i1cf7QNDb5bsoVNUZRqmCGVwdos7NNmL-6mKt-iK0d9hVoMJxwwn4BmWBcvQ</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Karki, Tomi</creator><general>EDP Sciences</general><scope>IQODW</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060701</creationdate><title>Transcendence of numbers with an expansion in a subclass of complexity 2N +1</title><author>Karki, Tomi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-7c58f159986a016374f97b881f4112c4674ef11fefc546ce983c5dd6bb61ccaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algebra</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information retrieval. Graph</topic><topic>Mathematics</topic><topic>Number theory</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karki, Tomi</creatorcontrib><collection>Pascal-Francis</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Informatique théorique et applications (Imprimé)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karki, Tomi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcendence of numbers with an expansion in a subclass of complexity 2N +1</atitle><jtitle>Informatique théorique et applications (Imprimé)</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>40</volume><issue>3</issue><spage>459</spage><epage>471</epage><pages>459-471</pages><issn>0988-3754</issn><eissn>1290-385X</eissn><coden>RITAE4</coden><abstract>We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let {symbol} be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it belongs to Subclass I and the number is known to be transcendental. We prove the transcendence of numbers with expansions in the subclasses II and III.</abstract><cop>Paris</cop><pub>EDP Sciences</pub><doi>10.1051/ita:2006034</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0988-3754
ispartof Informatique théorique et applications (Imprimé), 2006-07, Vol.40 (3), p.459-471
issn 0988-3754
1290-385X
language eng
recordid cdi_proquest_miscellaneous_29972271
source NUMDAM
subjects Algebra
Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Information retrieval. Graph
Mathematics
Number theory
Sciences and techniques of general use
Theoretical computing
title Transcendence of numbers with an expansion in a subclass of complexity 2N +1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcendence%20of%20numbers%20with%20an%20expansion%20in%20a%20subclass%20of%20complexity%202N%20+1&rft.jtitle=Informatique%20th%C3%A9orique%20et%20applications%20(Imprim%C3%A9)&rft.au=Karki,%20Tomi&rft.date=2006-07-01&rft.volume=40&rft.issue=3&rft.spage=459&rft.epage=471&rft.pages=459-471&rft.issn=0988-3754&rft.eissn=1290-385X&rft.coden=RITAE4&rft_id=info:doi/10.1051/ita:2006034&rft_dat=%3Cproquest_pasca%3E29972271%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29972271&rft_id=info:pmid/&rfr_iscdi=true