Transcendence of numbers with an expansion in a subclass of complexity 2N +1

We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let {symbol} be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Informatique théorique et applications (Imprimé) 2006-07, Vol.40 (3), p.459-471
1. Verfasser: Karki, Tomi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let {symbol} be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it belongs to Subclass I and the number is known to be transcendental. We prove the transcendence of numbers with expansions in the subclasses II and III.
ISSN:0988-3754
1290-385X
DOI:10.1051/ita:2006034