Transcendence of numbers with an expansion in a subclass of complexity 2N +1
We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let {symbol} be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it...
Gespeichert in:
Veröffentlicht in: | Informatique théorique et applications (Imprimé) 2006-07, Vol.40 (3), p.459-471 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let {symbol} be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it belongs to Subclass I and the number is known to be transcendental. We prove the transcendence of numbers with expansions in the subclasses II and III. |
---|---|
ISSN: | 0988-3754 1290-385X |
DOI: | 10.1051/ita:2006034 |