Well-posedness, smooth dependence and centre manifold reduction for a semilinear hyperbolic system from laser dynamics

We prove existence, uniqueness, regularity and smooth dependence of the weak solution on the initial data for a semilinear, first order, dissipative hyperbolic system with discontinuous coefficients. Such hyperbolic systems have successfully been used to model the dynamics of distributed feedback mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2007-05, Vol.30 (8), p.931-960
Hauptverfasser: Lichtner, Mark, Radziunas, Mindaugas, Recke, Lutz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 960
container_issue 8
container_start_page 931
container_title Mathematical methods in the applied sciences
container_volume 30
creator Lichtner, Mark
Radziunas, Mindaugas
Recke, Lutz
description We prove existence, uniqueness, regularity and smooth dependence of the weak solution on the initial data for a semilinear, first order, dissipative hyperbolic system with discontinuous coefficients. Such hyperbolic systems have successfully been used to model the dynamics of distributed feedback multisection semiconductor lasers. We show that in a function space of continuous functions the weak solutions generate a smooth skew product semiflow. Using slow fast structure and dissipativity we prove the existence of smooth exponentially attracting invariant centre manifolds for the non‐autonomous model. Copyright © 2006 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.816
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29969872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29969872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3606-70949c95c57e4ecb8438fb545f59178a5a750881f878abfed6ec98f8780150233</originalsourceid><addsrcrecordid>eNp1kM1u1TAQRiNEJS4F8QreAAua1k7i2F5WFS2I3rIBtWJj-Tpj1eCf1JMLzduTKhWsuhp90tGR5lTVG0aPGaXNSYzmWLL-WbVhVKmadaJ_Xm0oE7TuGta9qF4i_qSUSsaaTfX7GkKox4wwJEA8Ihhznm7JACOkAZIFYtJALKSpAIkmeZfDQAoMezv5nIjLhRiCEH3wCUwht_MIZZeDtwRnnCASV3IkwSAUMszJRG_xVXXgTEB4_XgPq-_nH7-dfaovv158Pju9rG3b074WVHXKKm65gA7sTnatdDvecccVE9JwIziVkjm5jJ2DoQer5MOijNOmbQ-rd6t3LPluDzjp6NEuL5sEeY-6UapXUjQL-H4FbcmIBZwei4-mzJpR_dBVL1310nUh3z4qDVoTXDHJevyPy14xybuF-7Byf3yA-Smd3m5PV2u90n5Jdv-PNuWX7kUruL6-utA351_49qb5oWX7FztRlo4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29969872</pqid></control><display><type>article</type><title>Well-posedness, smooth dependence and centre manifold reduction for a semilinear hyperbolic system from laser dynamics</title><source>Wiley Journals</source><creator>Lichtner, Mark ; Radziunas, Mindaugas ; Recke, Lutz</creator><creatorcontrib>Lichtner, Mark ; Radziunas, Mindaugas ; Recke, Lutz</creatorcontrib><description>We prove existence, uniqueness, regularity and smooth dependence of the weak solution on the initial data for a semilinear, first order, dissipative hyperbolic system with discontinuous coefficients. Such hyperbolic systems have successfully been used to model the dynamics of distributed feedback multisection semiconductor lasers. We show that in a function space of continuous functions the weak solutions generate a smooth skew product semiflow. Using slow fast structure and dissipativity we prove the existence of smooth exponentially attracting invariant centre manifolds for the non‐autonomous model. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.816</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>discontinuous coefficients ; Exact sciences and technology ; existence ; existence of smooth invariant centre manifolds ; existence, uniqueness, regularity of weak solutions ; Global analysis, analysis on manifolds ; laser dynamics ; Mathematical analysis ; Mathematics ; non-autonomous system ; Partial differential equations ; regularity of weak solutions ; Sciences and techniques of general use ; smooth dependence on data ; smooth semiflow property ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; uniqueness</subject><ispartof>Mathematical methods in the applied sciences, 2007-05, Vol.30 (8), p.931-960</ispartof><rights>Copyright © 2006 John Wiley &amp; Sons, Ltd.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3606-70949c95c57e4ecb8438fb545f59178a5a750881f878abfed6ec98f8780150233</citedby><cites>FETCH-LOGICAL-c3606-70949c95c57e4ecb8438fb545f59178a5a750881f878abfed6ec98f8780150233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.816$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.816$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18691854$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lichtner, Mark</creatorcontrib><creatorcontrib>Radziunas, Mindaugas</creatorcontrib><creatorcontrib>Recke, Lutz</creatorcontrib><title>Well-posedness, smooth dependence and centre manifold reduction for a semilinear hyperbolic system from laser dynamics</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>We prove existence, uniqueness, regularity and smooth dependence of the weak solution on the initial data for a semilinear, first order, dissipative hyperbolic system with discontinuous coefficients. Such hyperbolic systems have successfully been used to model the dynamics of distributed feedback multisection semiconductor lasers. We show that in a function space of continuous functions the weak solutions generate a smooth skew product semiflow. Using slow fast structure and dissipativity we prove the existence of smooth exponentially attracting invariant centre manifolds for the non‐autonomous model. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><subject>discontinuous coefficients</subject><subject>Exact sciences and technology</subject><subject>existence</subject><subject>existence of smooth invariant centre manifolds</subject><subject>existence, uniqueness, regularity of weak solutions</subject><subject>Global analysis, analysis on manifolds</subject><subject>laser dynamics</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>non-autonomous system</subject><subject>Partial differential equations</subject><subject>regularity of weak solutions</subject><subject>Sciences and techniques of general use</subject><subject>smooth dependence on data</subject><subject>smooth semiflow property</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>uniqueness</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kM1u1TAQRiNEJS4F8QreAAua1k7i2F5WFS2I3rIBtWJj-Tpj1eCf1JMLzduTKhWsuhp90tGR5lTVG0aPGaXNSYzmWLL-WbVhVKmadaJ_Xm0oE7TuGta9qF4i_qSUSsaaTfX7GkKox4wwJEA8Ihhznm7JACOkAZIFYtJALKSpAIkmeZfDQAoMezv5nIjLhRiCEH3wCUwht_MIZZeDtwRnnCASV3IkwSAUMszJRG_xVXXgTEB4_XgPq-_nH7-dfaovv158Pju9rG3b074WVHXKKm65gA7sTnatdDvecccVE9JwIziVkjm5jJ2DoQer5MOijNOmbQ-rd6t3LPluDzjp6NEuL5sEeY-6UapXUjQL-H4FbcmIBZwei4-mzJpR_dBVL1310nUh3z4qDVoTXDHJevyPy14xybuF-7Byf3yA-Smd3m5PV2u90n5Jdv-PNuWX7kUruL6-utA351_49qb5oWX7FztRlo4</recordid><startdate>20070525</startdate><enddate>20070525</enddate><creator>Lichtner, Mark</creator><creator>Radziunas, Mindaugas</creator><creator>Recke, Lutz</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20070525</creationdate><title>Well-posedness, smooth dependence and centre manifold reduction for a semilinear hyperbolic system from laser dynamics</title><author>Lichtner, Mark ; Radziunas, Mindaugas ; Recke, Lutz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3606-70949c95c57e4ecb8438fb545f59178a5a750881f878abfed6ec98f8780150233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>discontinuous coefficients</topic><topic>Exact sciences and technology</topic><topic>existence</topic><topic>existence of smooth invariant centre manifolds</topic><topic>existence, uniqueness, regularity of weak solutions</topic><topic>Global analysis, analysis on manifolds</topic><topic>laser dynamics</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>non-autonomous system</topic><topic>Partial differential equations</topic><topic>regularity of weak solutions</topic><topic>Sciences and techniques of general use</topic><topic>smooth dependence on data</topic><topic>smooth semiflow property</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lichtner, Mark</creatorcontrib><creatorcontrib>Radziunas, Mindaugas</creatorcontrib><creatorcontrib>Recke, Lutz</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lichtner, Mark</au><au>Radziunas, Mindaugas</au><au>Recke, Lutz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Well-posedness, smooth dependence and centre manifold reduction for a semilinear hyperbolic system from laser dynamics</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2007-05-25</date><risdate>2007</risdate><volume>30</volume><issue>8</issue><spage>931</spage><epage>960</epage><pages>931-960</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>We prove existence, uniqueness, regularity and smooth dependence of the weak solution on the initial data for a semilinear, first order, dissipative hyperbolic system with discontinuous coefficients. Such hyperbolic systems have successfully been used to model the dynamics of distributed feedback multisection semiconductor lasers. We show that in a function space of continuous functions the weak solutions generate a smooth skew product semiflow. Using slow fast structure and dissipativity we prove the existence of smooth exponentially attracting invariant centre manifolds for the non‐autonomous model. Copyright © 2006 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.816</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2007-05, Vol.30 (8), p.931-960
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_miscellaneous_29969872
source Wiley Journals
subjects discontinuous coefficients
Exact sciences and technology
existence
existence of smooth invariant centre manifolds
existence, uniqueness, regularity of weak solutions
Global analysis, analysis on manifolds
laser dynamics
Mathematical analysis
Mathematics
non-autonomous system
Partial differential equations
regularity of weak solutions
Sciences and techniques of general use
smooth dependence on data
smooth semiflow property
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
uniqueness
title Well-posedness, smooth dependence and centre manifold reduction for a semilinear hyperbolic system from laser dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A11%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Well-posedness,%20smooth%20dependence%20and%20centre%20manifold%20reduction%20for%20a%20semilinear%20hyperbolic%20system%20from%20laser%20dynamics&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Lichtner,%20Mark&rft.date=2007-05-25&rft.volume=30&rft.issue=8&rft.spage=931&rft.epage=960&rft.pages=931-960&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.816&rft_dat=%3Cproquest_cross%3E29969872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29969872&rft_id=info:pmid/&rfr_iscdi=true