Well-posedness, smooth dependence and centre manifold reduction for a semilinear hyperbolic system from laser dynamics
We prove existence, uniqueness, regularity and smooth dependence of the weak solution on the initial data for a semilinear, first order, dissipative hyperbolic system with discontinuous coefficients. Such hyperbolic systems have successfully been used to model the dynamics of distributed feedback mu...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2007-05, Vol.30 (8), p.931-960 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove existence, uniqueness, regularity and smooth dependence of the weak solution on the initial data for a semilinear, first order, dissipative hyperbolic system with discontinuous coefficients. Such hyperbolic systems have successfully been used to model the dynamics of distributed feedback multisection semiconductor lasers. We show that in a function space of continuous functions the weak solutions generate a smooth skew product semiflow. Using slow fast structure and dissipativity we prove the existence of smooth exponentially attracting invariant centre manifolds for the non‐autonomous model. Copyright © 2006 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.816 |