Well-posedness, smooth dependence and centre manifold reduction for a semilinear hyperbolic system from laser dynamics

We prove existence, uniqueness, regularity and smooth dependence of the weak solution on the initial data for a semilinear, first order, dissipative hyperbolic system with discontinuous coefficients. Such hyperbolic systems have successfully been used to model the dynamics of distributed feedback mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2007-05, Vol.30 (8), p.931-960
Hauptverfasser: Lichtner, Mark, Radziunas, Mindaugas, Recke, Lutz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove existence, uniqueness, regularity and smooth dependence of the weak solution on the initial data for a semilinear, first order, dissipative hyperbolic system with discontinuous coefficients. Such hyperbolic systems have successfully been used to model the dynamics of distributed feedback multisection semiconductor lasers. We show that in a function space of continuous functions the weak solutions generate a smooth skew product semiflow. Using slow fast structure and dissipativity we prove the existence of smooth exponentially attracting invariant centre manifolds for the non‐autonomous model. Copyright © 2006 John Wiley & Sons, Ltd.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.816