Carboxyl-terminated butadiene acrylonitrile rubber/epoxy polymer alloys as damping adhesives and energy absorbable resins

Carboxyl‐terminated butadiene acrylonitrile (CTBN) liquid rubber/epoxy (diglycidyl ether of bisphenol‐A: DGEBA) / diamino diphenyl methane (DDM) resins, in which CTBN was 60 wt % as the major component, were formulated to evaluate the damping and adhesive properties. In cases where acrylonitrile (AN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2007-08, Vol.105 (4), p.1817-1824
Hauptverfasser: Kishi, Hajime, Nagao, Atsushi, Kobayashi, Yusaku, Matsuda, Satoshi, Asami, Toshihiko, Murakami, Atsushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carboxyl‐terminated butadiene acrylonitrile (CTBN) liquid rubber/epoxy (diglycidyl ether of bisphenol‐A: DGEBA) / diamino diphenyl methane (DDM) resins, in which CTBN was 60 wt % as the major component, were formulated to evaluate the damping and adhesive properties. In cases where acrylonitrile (AN) was 10∼18 mol % as copolymerization ratio in CTBN, the blend resins showed micro‐phase separated morphologies with rubber‐rich continuous phases and epoxy‐rich dispersed phases. The composite loss factors (η) for steel laminates, which consisted of two steel plates with a resin layer in between, depended highly on the environmental temperature and the resonant frequencies. On the other hand, in the case where AN was 26 mol % in CTBN, the cured resin did not show clear micro‐phase separation, which means the components achieve good compatibility in nano‐scale. This polymer alloy had a broad glass‐transition temperature range, which resulted in the high loss factor (η > 0.1) for the steel laminates and excellent energy absorbability as the bulk resin in a broad temperature range. Also the resin indicated high adhesive strengths to aluminum substrates under both shear and peel stress modes. The high adhesive strengths of the CTBN/epoxy polymer alloy originated in the high strength and the high strain energy to failure of the bulk resin. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007
ISSN:0021-8995
1097-4628
DOI:10.1002/app.26189