Thermophotovoltaic power generation systems using natural gas-fired radiant burners
Thermophotovoltaic (TPV) power generation in gas-fired furnaces is attracting technical attention. Considerable work has been done in the area of low bandgap GaSb cell-based TPV systems as well as silicon solar cell-based TPV systems. Previous investigations have shown that a radiant burner with a h...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2007-04, Vol.91 (7), p.588-596 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermophotovoltaic (TPV) power generation in gas-fired furnaces is attracting technical attention. Considerable work has been done in the area of low bandgap GaSb cell-based TPV systems as well as silicon solar cell-based TPV systems. Previous investigations have shown that a radiant burner with a high conversion level of fuel to radiation energy must be developed to realize an efficient TPV system. In our work, we investigated different natural gas-fired radiant burners in order to raise the conversion of fuel energy to thermal radiation. These burners were used as radiation sources to establish and test two TPV prototype systems. It was found that for a non-surface combustion radiant burner, the radiation output can be enhanced using a thermal radiator with a porous structure. Also, we developed a cascaded radiant burner that generates two streams of radiation output. One stream illuminates silicon concentrator solar cells while the other drives low bandgap GaSb cells. In this way, useful radiation output and thus TPV system efficiency are significantly increased due to the cascaded utilization of combustion heat and optimized thermal management. |
---|---|
ISSN: | 0927-0248 1879-3398 |
DOI: | 10.1016/j.solmat.2006.11.011 |