A 3D numerical model for computing non-breaking wave forces on slender piles
In this paper a numerical model for water-wave-body interaction is validated by comparing the numerical results with laboratory data. The numerical model is based on Euler's equation without considering the effects of energy dissipation. The Euler equations are solved by a two-step projection f...
Gespeichert in:
Veröffentlicht in: | Journal of engineering mathematics 2007-08, Vol.58 (1-4), p.19-30 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper a numerical model for water-wave-body interaction is validated by comparing the numerical results with laboratory data. The numerical model is based on Euler's equation without considering the effects of energy dissipation. The Euler equations are solved by a two-step projection finite-volume scheme and the free-surface displacements are tracked by the volume-of-fluid method. The numerical model is used to simulate solitary waves as well as periodic waves and their interaction with a vertical slender pile. A very good agreement between the experimental data and numerical results is observed for the time history of free-surface displacement, fluid-particle velocity, and dynamic pressure on the pile. |
---|---|
ISSN: | 0022-0833 1573-2703 |
DOI: | 10.1007/s10665-006-9094-6 |