Synthesis of non-agglomerated Ba0.77Ca0.23TiO3 nanopowders by a modified polymeric precursor method

In this work, we have studied the influence of the pH on the synthesis and structural properties of the Ba0.77Ca0.23TiO3 nanopowders synthesized by a modified polymeric precursor method, in order to achieve non-agglomerated powders. Synthesis, morphology, thermal reactions, crystallite and average p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sol-gel science and technology 2007-05, Vol.42 (2), p.173-179
Hauptverfasser: DA SILVA, Ronaldo Santos, BERNARDI, Maria Ines Basso, HERNANDES, Antonio Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we have studied the influence of the pH on the synthesis and structural properties of the Ba0.77Ca0.23TiO3 nanopowders synthesized by a modified polymeric precursor method, in order to achieve non-agglomerated powders. Synthesis, morphology, thermal reactions, crystallite and average particle size of the synthesized powders were investigated through thermal analysis (DTA/TG), X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and Infrared spectroscopy. In summary, Ba0.77Ca0.23TiO3 nanopowders were synthesized for the first time at a relative low temperature (500 °C). It was also found that the alkalinity and acidity of the solution presented a great influence on the powder properties. The best results were obtained from solutions with pH = 8.5 and 11 whose nanopowders presented weakly agglomerate, with homogeneous particle size and a narrow size distribution (30–40 nm). This behavior could be explained based on the FT-IR results in which it was possible to see the increased of the chelation in higher pHs.
ISSN:0928-0707
1573-4846
DOI:10.1007/s10971-007-1554-6