Viscoelastic and damping characteristics of poly(n-butyl acrylate)-poly(n-butyl methacrylate) semi-IPN latex films

This article reports the synthesis, characterization, and damping characteristics of semi‐interpenetrating (semi‐IPN) latex systems composed of poly n‐butyl acrylate (PBA) core and poly n‐butyl methacrylate (PBMA) shell. The IPN's were prepared by seeded emulsion polymerization using crosslinke...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers for advanced technologies 2007-05, Vol.18 (5), p.364-372
Hauptverfasser: Suresh, K. I., Vishwanatham, S., Bartsch, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article reports the synthesis, characterization, and damping characteristics of semi‐interpenetrating (semi‐IPN) latex systems composed of poly n‐butyl acrylate (PBA) core and poly n‐butyl methacrylate (PBMA) shell. The IPN's were prepared by seeded emulsion polymerization using crosslinked PBA seeds with varying crosslinker (m‐diisopropenyl benzene) concentration. The polymer weight ratio in the first and second stage polymerization is maintained at 1:1 in all the cases. The particle size determined by dynamic light scattering shows a decrease in the shell thickness with increasing crosslinker concentration of the seed. The mechanical properties, like Shore A hardness of the films, increased from 18 to 65 when the crosslinker concentration is increased from 0 to 4.8 mol%. The dynamic mechanical studies show that the modulus value of the IPN's is below that of non‐crosslinked films, and the value depends upon the crosslink density of the seed. Mechanical models, such as the Kerner's model and the Takayanagi's model, were used to explain the variation in the dynamic mechanical properties with the degree of seed crosslinking. The study indicates lower bound (rubbery) behavior for the films with lightly crosslinked cores. The study also shows that, at lower crosslinker concentration enhanced phase separation and better damping properties are achieved but at higher cross linker concentration (>2 mol%) greater interpenetration of the shell monomer to the cores takes place and tough films, with reduced damping properties are formed. Copyright © 2007 John Wiley & Sons, Ltd.
ISSN:1042-7147
1099-1581
DOI:10.1002/pat.897