The strain path and forming limit analysis of the lubricated sheet metal forming process

Few previous attempts have been made to analyze numerically the strain path and the forming limit in complex lubricated sheet metal forming. Since usual approaches of solving the lubrication model are limited to axisymmetric and plane strain cases only, this paper developed a unified procedure for c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine tools & manufacture 2007-06, Vol.47 (7), p.1311-1321
1. Verfasser: Yang, Tung-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Few previous attempts have been made to analyze numerically the strain path and the forming limit in complex lubricated sheet metal forming. Since usual approaches of solving the lubrication model are limited to axisymmetric and plane strain cases only, this paper developed a unified procedure for combining the finite element code of sheet metal forming, the current lubrication/friction model and forming limit theory, to predict the strain path and fracture strains for either a steady or an unsteady three-dimensional process including both axisymmetric and plane strain cases. The availability of the method must be proved by a published problem, and an axisymmetric stretch forming process was therefore adopted as a benchmark. Numerical results showed that the present analysis provides good agreement with the experimental data of the strain path and the fracture strain for various tribological parameters such as lubricant viscosity and composite roughness of tooling and workpiece, and the advantage of the developed model is that it can be applied to solve the complicated 3D geometric problems.
ISSN:0890-6955
1879-2170
DOI:10.1016/j.ijmachtools.2006.08.019