Synthesis and Determination of the Kinetic Parameters for Non-Isothermal Decomposition of Complexes Ln(thd)3phen

In this work the kinetics of the thermal decomposition of two ß-diketone lanthanide complexes of the general formula Ln(thd)3phen (where Ln = Nd+3 or Tm+3, thd = 2,2,6,6- tetramethyl-3,5-heptanodione and phen = 1,10-phenantroline) has been studied. The powders were characterized by several technique...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2006-11, Vol.530-531, p.506-512
Hauptverfasser: Souza, A.G. de, da Silva Morais, Crislene Rodrigues, Lopes, Wilton Silva
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work the kinetics of the thermal decomposition of two ß-diketone lanthanide complexes of the general formula Ln(thd)3phen (where Ln = Nd+3 or Tm+3, thd = 2,2,6,6- tetramethyl-3,5-heptanodione and phen = 1,10-phenantroline) has been studied. The powders were characterized by several techniques. Thermal decomposition of the complexes was studied by non-isothermal thermogravimetry techniques. The kinetic model that best describes the process of the thermal decomposition of the complexes it was determined through the method proposed by Coats-Redfern. The average values the activation energy obtained were 136 and 114 kJ.mol-1 for the complexes Nd(thd)3phen and Tm(thd)3phen, respectively. The kinetic models that best described the thermal decomposition reaction the both complexes were R2. The model R2 indicating that the mechanism is controlled by phase-boundary reaction (cylindrical symmetry) and is defined by the function g(α) = 2[1-(1-a)1/2], indicating a mean reaction order. The values of activation energy suggests the following decreasing order of stability: Nd(thd)3phen > Tm(thd)3phen.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.530-531.506