Prediction of surface crown pillar stability using artificial neural networks

A relatively novel technique, artificial neural networks (ANN), is used in predicting the stability of crown pillars left over large excavations. Data for the training and verification of the networks were obtained from the literature. Four artificial networks, based on two different architectures,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical and analytical methods in geomechanics 2007-06, Vol.31 (7), p.917-931
Hauptverfasser: Tawadrous, A. S., Katsabanis, P. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A relatively novel technique, artificial neural networks (ANN), is used in predicting the stability of crown pillars left over large excavations. Data for the training and verification of the networks were obtained from the literature. Four artificial networks, based on two different architectures, were used. The networks used different numbers of input parameters to predict the stability or failure of crown pillars. Multi‐layer perceptron networks using mine type, dip of orebody, overburden thickness, pillar thickness, pillar length, stope height, backfill height, Rock Mass Rating (RMR) of the host rock and RMR of the orebody showed excellent performance in training and verification. Adding three more variables, namely pillar width, rock density and pillar thickness to width ratio, showed symptoms of over‐learning without degrading performance significantly. Radial basis function networks were capable of predicting crown pillar behaviour on the basis of few input functions. It was shown that mine type, dip and pillar thickness to width ratio can be used for a preliminary estimation of stability. Copyright © 2006 John Wiley & Sons, Ltd.
ISSN:0363-9061
1096-9853
DOI:10.1002/nag.566