Simulation of Cyclically Loaded Concrete Structures Based on the Finite-Element Method

The finite-element method for simulating the nonlinear behavior of reinforced concrete structures has progressed to the point where it is close to being a practical everyday tool for design engineers. Further advancements have made the analysis of arbitrary loading conditions, including reverse cycl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural engineering (New York, N.Y.) N.Y.), 2007-05, Vol.133 (5), p.728-738
Hauptverfasser: Palermo, Dan, Vecchio, Frank J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The finite-element method for simulating the nonlinear behavior of reinforced concrete structures has progressed to the point where it is close to being a practical everyday tool for design engineers. Further advancements have made the analysis of arbitrary loading conditions, including reverse cyclic loading or earthquake-type loading, feasible. Recent criticism has questioned the practicality, reliability, and robustness of the finite-element method due to perceived complexities involved in developing the model and interpreting the results. A series of analyses are presented on reinforced concrete structural walls of varying height-to-width ratio, varying wall cross section, and varying levels of reverse cyclic loading to demonstrate that the finite-element procedure is capable of providing quick and reliable simulations, while employing simple modeling techniques. The modeling herein utilizes low-powered rectangular membrane elements, and material properties are smeared within the elements. Behavioral aspects such as ultimate strength, displacements, postpeak ductility, energy dissipation, and failure mechanisms are well simulated.
ISSN:0733-9445
1943-541X
DOI:10.1061/(ASCE)0733-9445(2007)133:5(728)