Power spectrum of the fluctuation of the spectral staircase function
The one-sided power spectrum $P(f)$ of the fluctuation $N_{fluc} (E)$ and $N_{fluc}(\varepsilon)$ of the spectral staircase function, for respectively the original and unfolded spectrum, from its smooth average part is numerically estimated for Poisson spectrum and spectra of three Gaussian-random m...
Gespeichert in:
Veröffentlicht in: | Europhysics letters 2006-12, Vol.76 (6), p.1043-1049 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The one-sided power spectrum $P(f)$ of the fluctuation $N_{fluc} (E)$ and $N_{fluc}(\varepsilon)$ of the spectral staircase function, for respectively the original and unfolded spectrum, from its smooth average part is numerically estimated for Poisson spectrum and spectra of three Gaussian-random matrices: real symmetric, complex Hermitian, and quaternion-real Hermitian. We found that the power spectrum of $N_{fluc} (E)$ and $N_{fluc} (\varepsilon)$ is $a/f^2$ (brown) for Poisson spectrum but $c/(1+ df^2)$ (Lorentzian) for all three random matrix spectra. This result and the Berry-Tabor and Bohigas-Giannoni-Schmit conjectures imply the following conjecture: the power spectrum of $N_{fluc} (E)$ and $N_{fluc} (\varepsilon)$ is brown for classically integrable systems but Lorentzian for classically chaotic systems. Numerical evidence in support of this conjecture is presented. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/epl/i2006-10392-1 |