Natural convection in tilted rectangular enclosures with a vertically situated hot plate inside

A numerical study of laminar natural convection in tilted rectangular enclosures that contain a vertically situated hot plate is performed. The plate is very thin and isothermal on both lateral ends, and it acts as a heat source within the medium. Three surfaces of the rectangular enclosure are insu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2007-08, Vol.27 (11), p.1832-1840
Hauptverfasser: ALTAC, Zekeriya, KURTUL, Ozen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A numerical study of laminar natural convection in tilted rectangular enclosures that contain a vertically situated hot plate is performed. The plate is very thin and isothermal on both lateral ends, and it acts as a heat source within the medium. Three surfaces of the rectangular enclosure are insulated while one lateral surface is cold. Navier–Stokes equations, continuity equation and the energy equation, along with the Boussinesq approximation, are expressed in the form of vorticity-transport equations. All the pertinent equations are solved using the finite volume method with SIMPLE algorithm. The Rayleigh numbers and the tilt angle of the enclosure are ranged from 10 5 to 10 7 and from 0° to 90°, respectively. The aspect ratios of the rectangular enclosures that are considered in this study are A = 1 and A = 2. The isotherms and streamlines are produced for various Rayleigh numbers and geometrical conditions, and steady-state Nusselt numbers are computed. The steady-state plate-surface-averaged Nusselt numbers are computed for each case as a function of Rayleigh number and other non-dimensional geometrical parameters and a correlation useful for practical problems was derived.
ISSN:1359-4311
DOI:10.1016/j.applthermaleng.2007.01.006