On the application of the single-phase level set method to naval hydrodynamic flows

The application of the single-phase level set approach to the numerical simulations of three-dimensional free surface flows around complex geometries, at both non-breaking and breaking regimes is presented. In this approach only the liquid phase is simulated and the level set function is used as tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2007-06, Vol.36 (5), p.868-886
Hauptverfasser: Di Mascio, A., Broglia, R., Muscari, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of the single-phase level set approach to the numerical simulations of three-dimensional free surface flows around complex geometries, at both non-breaking and breaking regimes is presented. In this approach only the liquid phase is simulated and the level set function is used as tracking device to locate the free surface position. The extrapolation of the solution in the dummy points in the gaseous phase is such that second-order accuracy is maintained also in the points adjacent to the free surface; the time evolution of the level set function and the re-initialization step have been merged so to get a function which is a distance function everywhere, and satisfies, at the same time, the kinematic condition on the free surface. The implementation of this technique into a general purpose Reynolds averaged Navier–Stokes (RANS) equations solver developed at INSEAN [Di Mascio A, Broglia R, Favini B. A Second Order Godunov-type Scheme for Naval Hydrodynamics. Kluwer Academic/Plenum Publishers; 2001, p. 253–61], is described in details; capabilities of the algorithm in dealing with non-breaking and breaking flows in the naval hydrodynamic context will be demonstrated by using a submerged hydrofoil and two different ship hulls in straight course as test cases. Comparisons with both experimental data and numerical surface fitting computations are presented; convergence properties of the algorithm, as well as validation and verification assessment will be also discussed.
ISSN:0045-7930
1879-0747
DOI:10.1016/j.compfluid.2006.08.001