MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem
This paper presents a new multiobjective genetic algorithm based on the Tchebycheff scalarizing function, which aims to generate a good approximation of the nondominated solution set of the multiobjective problem. The algorithm performs several stages, each one intended for searching potentially non...
Gespeichert in:
Veröffentlicht in: | Computers & operations research 2007-11, Vol.34 (11), p.3458-3470 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a new multiobjective genetic algorithm based on the Tchebycheff scalarizing function, which aims to generate a good approximation of the nondominated solution set of the multiobjective problem. The algorithm performs several stages, each one intended for searching potentially nondominated solutions in a different part of the Pareto front. Pre-defined weight vectors act as pivots to define the weighted-Tchebycheff scalarizing functions used in each stage. Therefore, each stage focuses the search on a specific region, leading to an iterative approximation of the entire nondominated set.
This algorithm, called MOTGA (Multiple objective Tchebycheff based Genetic Algorithm) has been designed to the multiobjective multidimensional 0/1 knapsack problem, for which a dedicated routine to repair infeasible solutions was implemented. Computational results are presented and compared with the outcomes of other evolutionary algorithms. |
---|---|
ISSN: | 0305-0548 1873-765X 0305-0548 |
DOI: | 10.1016/j.cor.2006.02.008 |