High performance, uniaxially-strained, silicon and germanium, double-gate p-MOSFETs
The effect of uniaxial-strain, band-structure, mobility, effective masses, density of states, channel orientation and high-field transport on the drive current, off-state leakage and switching delay in nano-scale, Silicon (Si) and Germanium (Ge), p-MOS DGFETs is thoroughly and systematically investi...
Gespeichert in:
Veröffentlicht in: | Microelectronic engineering 2007-09, Vol.84 (9), p.2063-2066 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of uniaxial-strain, band-structure, mobility, effective masses, density of states, channel orientation and high-field transport on the drive current, off-state leakage and switching delay in nano-scale, Silicon (Si) and Germanium (Ge), p-MOS DGFETs is thoroughly and systematically investigated. To accurately model and capture all these complex effects, different simulation techniques, such as the Non-local Empirical Pseudopotential method (bandstructure), Full-Band Monte-Carlo Simulations (transport), 1-D Poisson-Schrodinger (electrostatics) and detailed Band-To-Band-Tunneling (BTBT) (including bandstructure and quantum effects) simulations, were used in this study. |
---|---|
ISSN: | 0167-9317 1873-5568 |
DOI: | 10.1016/j.mee.2007.04.085 |