Computing elliptic membrane high frequencies by Mathieu and Galerkin methods

Resonant modes of an elliptic membrane are computed for a wide range of frequencies using a Galerkin formulation. Results are confirmed using Mathieu functions and finite-element methods. Algorithms and their implementations are described to handle Dirichlet or Neumann boundary conditions and draw a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering mathematics 2007-01, Vol.57 (1), p.41-55
Hauptverfasser: Wilson, Howard B., Scharstein, Robert W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Resonant modes of an elliptic membrane are computed for a wide range of frequencies using a Galerkin formulation. Results are confirmed using Mathieu functions and finite-element methods. Algorithms and their implementations are described to handle Dirichlet or Neumann boundary conditions and draw animations or contour plots of the modal surfaces. The methods agree to four or more digit accuracy for the first one hundred modes. The effects of high function order and high frequency parameter upon the convergence of the modified Mathieu function series are discussed and quantified. The Galerkin method is conceptually simple and requires only an eigenvalue solver without the need of special functions.
ISSN:0022-0833
1573-2703
DOI:10.1007/s10665-006-9070-1