Chitosan-based fluorescent probe for the detection of Fe3+ in real water and food samples

Iron ions play a crucial role in the environment and the human body. Therefore, developing an effective detection method is crucial. In this paper, we report CNS2, a chitosan-based fluorescent probe utilizing naphthalimide as a fluorophore. CNS2 is designed to “quench” its own yellow fluorescence th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-04, Vol.265, p.131111-131111, Article 131111
Hauptverfasser: Yuan, Xushuo, Qu, Na, Xu, Mengying, Liu, Li, Lin, Yanfei, Xie, Linkun, Chai, Xijuan, Xu, Kaimeng, Du, Guanben, Zhang, Lianpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Iron ions play a crucial role in the environment and the human body. Therefore, developing an effective detection method is crucial. In this paper, we report CNS2, a chitosan-based fluorescent probe utilizing naphthalimide as a fluorophore. CNS2 is designed to “quench” its own yellow fluorescence through the specific binding of compounds containing enol structures to Fe3+. Studying the fluorescence lifetime of CNS2 in the presence or absence of Fe3+ reveals that the quenching mechanism is static. The presence of multiple recognition sites on the chitosan chain bound to Fe3+ gave CNS2 rapid recognition (1 min) and high sensitivity, with a detection limit as low as 0.211 μM. Moreover, the recognition of Fe3+ by CNS2 had a good specificity and was not affected by interferences. More importantly, in this study, CNS2 was successfully utilised to prepare fluorescent composite membranes and to detect Fe3+ in real water samples and a variety of food samples. The results show that the complex sample environment still does not affect the recognition of Fe3+ by CNS2. All the above experiments obtained more satisfactory results, which provide strong support for the detection of Fe3+ by the probe CNS2 in practical applications. [Display omitted] •A chitosan-based fluorescent probe was prepared.•Detecting Fe3+ with fast recognition capability (1 min) and high sensitivity (0.211 μM).•The detection of Fe3+ in real water and food samples has certain application value and prospects.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2024.131111