Sulfate radical dominated rapid pollutants degradation leaded by selenium vacancies in core-shell N-doped carbon wrapped cobalt diselenide nanospheres

[Display omitted] •Core-shell CoSe2-x@NC with abundant vacancies was applied to activate PMS for the first time.•The introduction of Se vacancies greatly enhanced the redox speed of Co3+/Co2+.•Sulfate Radical (SO4•−) played dominant roles in CBZ degradation.•CoSe2-x@NC500/PMS system displayed superi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-07, Vol.665, p.219-231
Hauptverfasser: Liao, Tao, Liu, Xiaomei, Liu, Yuexu, Li, Ning, Wang, Jun, Li, Ningyuan, Wang, Xiaomin, Li, Yang, Fan, Xiaobin, Peng, Wenchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •Core-shell CoSe2-x@NC with abundant vacancies was applied to activate PMS for the first time.•The introduction of Se vacancies greatly enhanced the redox speed of Co3+/Co2+.•Sulfate Radical (SO4•−) played dominant roles in CBZ degradation.•CoSe2-x@NC500/PMS system displayed superior activity and excellent stability. Herein, a new heterogeneous CoSe2-x@NC material with abundant selenium vacancies is synthesized via an in-situ carbonization-selenization process from cobaltic metal organic framework (Co-MOF). The obtained CoSe2-x@NC has a unique electronic structure and rich active sites, which can activate peroxymonosulfate (PMS) to degrade carbamazepine (CBZ) with superior catalytic performance and stability. The quenchingexperiments and EPR test show that SO4•− is the dominant reactive oxidation species (ROSs) for CBZ degradation. Significantly, systemic electrochemical tests and theoretical calculations illustrated that the dominant role of SO4•− is attributed to the existence of abundant selenium vacancies in CoSe2-x@NC, which can adjust the density of electron cloud of the Co atoms in CoSe2-x@NC to improve the PMS adsorption and promoting the conversion of transition metallic redox pairs (Co3+/Co2+). This work provides a facile way to improve the activity and stability of CoSe2 by defect engineering in the PMS based advanced oxidation process (AOPs).
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2024.03.141