Selenium increases antimony uptake in ramie (Boehmeria nivea L.) by enhancing the physiological, antioxidative, and ionomic mechanisms
Ramie (Boehmeria nivea L.) is a promising phytoremediation candidate due to its high tolerance and enrichment capacity for antimony (Sb). However, challenges arise as Sb accumulated mainly in roots, complicating soil extraction. Under severe Sb contamination, the growth of ramie may be inhibited. St...
Gespeichert in:
Veröffentlicht in: | Journal of environmental management 2024-04, Vol.356, p.120694-120694, Article 120694 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ramie (Boehmeria nivea L.) is a promising phytoremediation candidate due to its high tolerance and enrichment capacity for antimony (Sb). However, challenges arise as Sb accumulated mainly in roots, complicating soil extraction. Under severe Sb contamination, the growth of ramie may be inhibited. Strategies are needed to enhance Sb accumulation in ramie's aboveground parts and improve tolerance to Sb stress. Considering the beneficial effects of selenium (Se) on plant growth and enhancing resistance to abiotic stresses, this study aimed to investigate the potential use of Se in enhancing Sb uptake by ramie. We investigated the effects of Se (0.5, 1, 2, 5, or 10 μM) on ramie growth, Sb uptake and speciation, antioxidant responses, and ionomic profiling in ramie under 10 mg/L of SbIII or antimonate (SbV) stresses. Results revealed that the addition of 0.5 μM Se significantly increased shoot biomass by 75.73% under SbIII stress but showed minimal effects on shoot and root length in both SbIII and SbV treatments. Under SbIII stress, 2 μM Se significantly enhanced Sb concentrations by 48.42% in roots and 62.88% in leaves. In the case of SbV exposure, 10 μM Se increased Sb content in roots by 42.57%, and 1 μM Se led to a 91.74% increase in leaves. The speciation analysis suggested that Se promoted the oxidation of SbIII to less toxic SbV to mitigate Sb toxicity. Additionally, Se addition effectively minimized the excess reactive oxygen species produced by Sb exposure, with the lowest malondialdehyde (MDA) content at 0.5 μM Se under SbIII and 2 μM Se under SbV, by activating antioxidant enzymes including superoxide dismutase, catalase, peroxidase, and glutathione peroxidase. Ionomic analysis revealed that Se helped in maintaining the homeostasis of certain nutrient elements, including magnesium, potassium (K), calcium (Ca), iron (Fe), and copper (Cu) in the SbIII-treated roots and K and manganese (Mg) in the SbV-treated roots. The results suggest that low concentrations of Se can be employed to enhance the phytoremediation of Sb-contaminated soils using ramie.
[Display omitted]
•Se effectively mitigated Sb-induced ramie biomass inhibition.•Se enhanced Sb uptake in ramie and facilitated the conversion of SbIII to less toxic SbV.•Se upregulated SOD, CAT, POD, and GPX to counteract excessive ROS generated by Sb.•Se contributed to maintaining the homeostasis of Mg, K, Ca, Fe, Cu, and Mn.•Se dosage should be optimized for maximum effect as it is dose-dependent. |
---|---|
ISSN: | 0301-4797 1095-8630 |
DOI: | 10.1016/j.jenvman.2024.120694 |