Modeling of Effective Diffusion Coefficient of Substances in Concrete Considering Spatial Properties of Composite Materials

This research is conducted to develop a model to predict the effective diffusion coefficients of substances (De) in concrete considering the spatial properties of composite materials. In this model, concrete is assumed to be composed of cement paste, an interfacial transition zone and aggregate, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Advanced Concrete Technology 2005, Vol.3(2), pp.241-251
Hauptverfasser: Kato, Yoshitaka, Uomoto, Taketo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research is conducted to develop a model to predict the effective diffusion coefficients of substances (De) in concrete considering the spatial properties of composite materials. In this model, concrete is assumed to be composed of cement paste, an interfacial transition zone and aggregate, and the spatial properties of each material are considered with random arrangement of each material. De in concrete is calculated based on the calculation results for the cement paste and interfacial transition zone. The proposed model can appropriately evaluate De in concrete in previous research. The influence of the spatial properties of each composite material on the dispersion of De is analytically investigated. The influence of cement particle arrangement is larger than that of fine and coarse aggregate, and the lower W/C, the greater that influence. Moreover, the influence of the interfacial transition zone on chloride ion diffusivity in concrete is also analyzed. This influence was found to be quite large, so that the interfacial transition zone should be taken into account for simulating diffusion in cementitious materials. In this model, the pore structure of cement paste is very simplified. Thus, it is necessary to examine the correspondence of the modeled pore structure and the actual pore structure.
ISSN:1346-8014
1347-3913
DOI:10.3151/jact.3.241