Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing
The mechanical behaviour of transformation-induced plasticity (TRIP)-assisted multiphase steels is addressed based on three different microstructures generated from the same steel grade. The mechanisms responsible for the work-hardening capacity and the resulting balance between strength and resista...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2007-06, Vol.55 (11), p.3681-3693 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mechanical behaviour of transformation-induced plasticity (TRIP)-assisted multiphase steels is addressed based on three different microstructures generated from the same steel grade. The mechanisms responsible for the work-hardening capacity and the resulting balance between strength and resistance to plastic localization are investigated at different length scales. The macroscopic mechanical response is determined by simple shear, uniaxial tension, Marciniak and equibiaxial tension supplemented by earlier tensile tests on notched and cracked specimens. It is shown that the transformation rate reaches a maximum for stress states intermediate between uniaxial tension and equibiaxial tension. At an intermediate length scale, the true in situ flow properties of the individual ferrite–bainite and retained austenite phases are determined by combining neutron diffraction and digital image correlation. This combined analysis elucidates the partitioning of stress and strain between the different constitutive phases. Based on these results, supplemented by transmission electron microscopy and electron backscattered diffraction observations, a general overview of the hardening behaviour of TRIP-assisted multiphase steels is depicted. |
---|---|
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/j.actamat.2007.02.029 |