Computational and experimental study of the cluster size distribution in MAPLE
A combined experimental and computational study is performed to investigate the origin and characteristics of the surface features observed in SEM images of thin polymer films deposited in matrix-assisted pulsed laser evaporation (MAPLE). Analysis of high-resolution SEM images of surface morphologie...
Gespeichert in:
Veröffentlicht in: | Applied surface science 2007-05, Vol.253 (15), p.6456-6460 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A combined experimental and computational study is performed to investigate the origin and characteristics of the surface features observed in SEM images of thin polymer films deposited in matrix-assisted pulsed laser evaporation (MAPLE). Analysis of high-resolution SEM images of surface morphologies of the films deposited at different fluences reveals that the mass distributions of the surface features can be well described by a power-law,
Y(
N)
∝
N
−
t
, with exponent −
t
≈
−1.6. Molecular dynamic simulations of the MAPLE process predict a similar size distribution for large clusters observed in the ablation plume. A weak dependence of the cluster size distributions on fluence and target composition suggests that the power-law cluster size distribution may be a general characteristic of the ablation plume generated as a result of an explosive decomposition of a target region overheated above the limit of its thermodynamic stability. Based on the simulation results, we suggest that the ejection of large matrix-polymer clusters, followed by evaporation of the volatile matrix, is responsible for the formation of the surface features observed in the polymer films deposited in MAPLE experiments. |
---|---|
ISSN: | 0169-4332 1873-5584 |
DOI: | 10.1016/j.apsusc.2007.01.057 |