Bioinspired design of dental multilayers

This paper considers the use of bioinspired functionally graded structures in the design of dental multi-layers that are more resistant to sub-surface crack nucleation. Unlike existing dental crown restorations that give rise to high stress concentration, the functionally graded layers (between crow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2007-08, Vol.464 (1), p.315-320
Hauptverfasser: Huang, M., Rahbar, N., Wang, R., Thompson, V., Rekow, D., Soboyejo, W.O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers the use of bioinspired functionally graded structures in the design of dental multi-layers that are more resistant to sub-surface crack nucleation. Unlike existing dental crown restorations that give rise to high stress concentration, the functionally graded layers (between crown materials and the joins that attach them to dentin) are shown to promote significant reductions in stress and improvements in the critical crack size. Special inspiration is drawn from the low stress concentrations associated with the graded distributions in the dentin–enamel junction (DEJ). The implications of such functionally graded structures are also discussed for the design of dental restorations.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2007.02.058