Bounds on vertical heat transport for infinite-Prandtl-number Rayleigh–Bénard convection

For the infinite-Prandtl-number limit of the Boussinesq equations, the enhancement of vertical heat transport in Rayleigh–Bénard convection, the Nusselt number $\hbox{\it Nu}$, is bounded above in terms of the Rayleigh number $\hbox{\it Ra}$ according to $\hbox{\it Nu}\,{\le}\,0.644 \,{\times}\hbox{...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2006-08, Vol.560, p.229-241
Hauptverfasser: DOERING, CHARLES R., OTTO, FELIX, REZNIKOFF, MARIA G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the infinite-Prandtl-number limit of the Boussinesq equations, the enhancement of vertical heat transport in Rayleigh–Bénard convection, the Nusselt number $\hbox{\it Nu}$, is bounded above in terms of the Rayleigh number $\hbox{\it Ra}$ according to $\hbox{\it Nu}\,{\le}\,0.644 \,{\times}\hbox{\it Ra}^{{1}/{3}} [\log{\hbox{\it Ra}}]^{{1}/{3}}$ as $\hbox{\it Ra}\,{\rightarrow}\,\infty$. This result follows from the utilization of a novel logarithmic profile in the background method for producing bounds on bulk transport, together with new estimates for the bi-Laplacian in a weighted $L^{2}$ space. It is a quantitative improvement of the best currently available analytic result, and it comes within the logarithmic factor of the pure 1/3 scaling anticipated by both the classical marginally stable boundary layer argument and the most recent high-resolution numerical computations of the optimal bound on $\hbox{\it Nu}$ using the background method.
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112006000097