Bounds on vertical heat transport for infinite-Prandtl-number Rayleigh–Bénard convection
For the infinite-Prandtl-number limit of the Boussinesq equations, the enhancement of vertical heat transport in Rayleigh–Bénard convection, the Nusselt number $\hbox{\it Nu}$, is bounded above in terms of the Rayleigh number $\hbox{\it Ra}$ according to $\hbox{\it Nu}\,{\le}\,0.644 \,{\times}\hbox{...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2006-08, Vol.560, p.229-241 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the infinite-Prandtl-number limit of the Boussinesq equations, the enhancement of vertical heat transport in Rayleigh–Bénard convection, the Nusselt number $\hbox{\it Nu}$, is bounded above in terms of the Rayleigh number $\hbox{\it Ra}$ according to $\hbox{\it Nu}\,{\le}\,0.644 \,{\times}\hbox{\it Ra}^{{1}/{3}} [\log{\hbox{\it Ra}}]^{{1}/{3}}$ as $\hbox{\it Ra}\,{\rightarrow}\,\infty$. This result follows from the utilization of a novel logarithmic profile in the background method for producing bounds on bulk transport, together with new estimates for the bi-Laplacian in a weighted $L^{2}$ space. It is a quantitative improvement of the best currently available analytic result, and it comes within the logarithmic factor of the pure 1/3 scaling anticipated by both the classical marginally stable boundary layer argument and the most recent high-resolution numerical computations of the optimal bound on $\hbox{\it Nu}$ using the background method. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S0022112006000097 |