HgCdTe focal plane arrays for dual-color mid- and long-wavelength infrared detection
Raytheon Vision Systems (RVS, Goleta, CA) in collaboration with HRL Laboratories (Malibu, CA) is contributing to the maturation and manufacturing readiness of third-generation, dual-color, HgCdTe infrared staring focal plane arrays (FPAs). This paper will highlight data from the routine growth and f...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2004-06, Vol.33 (6), p.509-516 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 516 |
---|---|
container_issue | 6 |
container_start_page | 509 |
container_title | Journal of electronic materials |
container_volume | 33 |
creator | SMITH, E. P. G PHAM, L. T COUSSA, R. A KOSAI, K RADFORD, W. A GIEGERICH, L. M EDWARDS, J. M JOHNSON, S. M BAUR, S. T ROTH, J. A NOSHO, B DE LYON, T. J VENZOR, G. M JENSEN, J. E LONGSHORE, R. E NORTON, E. M NEWTON, M. D GOETZ, P. M RANDALL, V. K GALLAGHER, A. M PIERCE, G. K PATTEN, E. A |
description | Raytheon Vision Systems (RVS, Goleta, CA) in collaboration with HRL Laboratories (Malibu, CA) is contributing to the maturation and manufacturing readiness of third-generation, dual-color, HgCdTe infrared staring focal plane arrays (FPAs). This paper will highlight data from the routine growth and fabrication of 256 × 256 30-µm unit-cell staring FPAs that provide dual-color detection in the mid-wavelength infrared (MWIR) and long wavelength infrared (LWIR) spectral regions. The FPAs configured for MWIR/MWIR, MWIR/LWIR, and LWIR/LWIR detection are used for target identification, signature recognition, and clutter rejection in a wide variety of space and ground-based applications. Optimized triple-layer heterojunction (TLHJ) device designs and molecular beam epitaxy (MBE) growth using in-situ controls has contributed to individual bands in all dual-color FPA configurations exhibiting high operability (>99%) and both performance and FPA functionality comparable to state-of-the-art, single-color technology. The measured spectral cross talk from out-of-band radiation for either band is also typically less than 10%. An FPA architecture based on a single-mesa, single-indium bump, and sequential-mode operation leverages current single-color processes in production while also providing compatibility with existing second-generation technologies. [PUBLICATION ABSTRACT] Key words: Dual-color, focal plane array (FPA), mid-wavelength infrared (MWIR), long-wavelength infrared (LWIR), molecular beam epitaxy (MBE) |
doi_str_mv | 10.1007/s11664-004-0039-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29808499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29808499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-9621d5f73fc33ecce0df4f8f102e3e4c26c3abcde2792211b99f52255f1636e73</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKs_wNsi6C2aSTbp5ihFrVDwUsFbSJNJ3bLdrclW6b83SwuCh2E-eOdl5iHkGtg9MDZ5SABKlZSxIYSm5QkZgSwFhUp9nJIREwqo5EKek4uU1oyBhApGZDFbTf0Ci9A52xTbxrZY2BjtPuVRLPzONtR1TS43taeFbX3RdO2K_thvbLBd9Z9F3YZoI_rCY4-ur7v2kpwF2yS8OuYxeX9-WkxndP728jp9nFMnBPRUKw5ehokIuUfnkPlQhioA4yiwdFw5YZfOI59ozgGWWgfJuZQBlFA4EWNyd_Ddxu5rh6k3mzo5bIYvul0yXFesKrXOwpt_wnW3i22-zXBWZnOteRbBQeRil1LEYLax3ti4N8DMANkcIJsM2QyQTZl3bo_GNmWAGUTr6vS3KCs1mItfpIh7ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204922992</pqid></control><display><type>article</type><title>HgCdTe focal plane arrays for dual-color mid- and long-wavelength infrared detection</title><source>Springer Nature - Complete Springer Journals</source><creator>SMITH, E. P. G ; PHAM, L. T ; COUSSA, R. A ; KOSAI, K ; RADFORD, W. A ; GIEGERICH, L. M ; EDWARDS, J. M ; JOHNSON, S. M ; BAUR, S. T ; ROTH, J. A ; NOSHO, B ; DE LYON, T. J ; VENZOR, G. M ; JENSEN, J. E ; LONGSHORE, R. E ; NORTON, E. M ; NEWTON, M. D ; GOETZ, P. M ; RANDALL, V. K ; GALLAGHER, A. M ; PIERCE, G. K ; PATTEN, E. A</creator><creatorcontrib>SMITH, E. P. G ; PHAM, L. T ; COUSSA, R. A ; KOSAI, K ; RADFORD, W. A ; GIEGERICH, L. M ; EDWARDS, J. M ; JOHNSON, S. M ; BAUR, S. T ; ROTH, J. A ; NOSHO, B ; DE LYON, T. J ; VENZOR, G. M ; JENSEN, J. E ; LONGSHORE, R. E ; NORTON, E. M ; NEWTON, M. D ; GOETZ, P. M ; RANDALL, V. K ; GALLAGHER, A. M ; PIERCE, G. K ; PATTEN, E. A</creatorcontrib><description>Raytheon Vision Systems (RVS, Goleta, CA) in collaboration with HRL Laboratories (Malibu, CA) is contributing to the maturation and manufacturing readiness of third-generation, dual-color, HgCdTe infrared staring focal plane arrays (FPAs). This paper will highlight data from the routine growth and fabrication of 256 × 256 30-µm unit-cell staring FPAs that provide dual-color detection in the mid-wavelength infrared (MWIR) and long wavelength infrared (LWIR) spectral regions. The FPAs configured for MWIR/MWIR, MWIR/LWIR, and LWIR/LWIR detection are used for target identification, signature recognition, and clutter rejection in a wide variety of space and ground-based applications. Optimized triple-layer heterojunction (TLHJ) device designs and molecular beam epitaxy (MBE) growth using in-situ controls has contributed to individual bands in all dual-color FPA configurations exhibiting high operability (>99%) and both performance and FPA functionality comparable to state-of-the-art, single-color technology. The measured spectral cross talk from out-of-band radiation for either band is also typically less than 10%. An FPA architecture based on a single-mesa, single-indium bump, and sequential-mode operation leverages current single-color processes in production while also providing compatibility with existing second-generation technologies. [PUBLICATION ABSTRACT] Key words: Dual-color, focal plane array (FPA), mid-wavelength infrared (MWIR), long-wavelength infrared (LWIR), molecular beam epitaxy (MBE)</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-004-0039-4</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York, NY: Institute of Electrical and Electronics Engineers</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Growth from vapor ; Infrared radiation ; Materials science ; Mercury cadmium telluride ; Methods of crystal growth; physics of crystal growth ; Molecular beam epitaxy ; Physics ; Radiation detectors</subject><ispartof>Journal of electronic materials, 2004-06, Vol.33 (6), p.509-516</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society Jun 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-9621d5f73fc33ecce0df4f8f102e3e4c26c3abcde2792211b99f52255f1636e73</citedby><cites>FETCH-LOGICAL-c331t-9621d5f73fc33ecce0df4f8f102e3e4c26c3abcde2792211b99f52255f1636e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15862299$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SMITH, E. P. G</creatorcontrib><creatorcontrib>PHAM, L. T</creatorcontrib><creatorcontrib>COUSSA, R. A</creatorcontrib><creatorcontrib>KOSAI, K</creatorcontrib><creatorcontrib>RADFORD, W. A</creatorcontrib><creatorcontrib>GIEGERICH, L. M</creatorcontrib><creatorcontrib>EDWARDS, J. M</creatorcontrib><creatorcontrib>JOHNSON, S. M</creatorcontrib><creatorcontrib>BAUR, S. T</creatorcontrib><creatorcontrib>ROTH, J. A</creatorcontrib><creatorcontrib>NOSHO, B</creatorcontrib><creatorcontrib>DE LYON, T. J</creatorcontrib><creatorcontrib>VENZOR, G. M</creatorcontrib><creatorcontrib>JENSEN, J. E</creatorcontrib><creatorcontrib>LONGSHORE, R. E</creatorcontrib><creatorcontrib>NORTON, E. M</creatorcontrib><creatorcontrib>NEWTON, M. D</creatorcontrib><creatorcontrib>GOETZ, P. M</creatorcontrib><creatorcontrib>RANDALL, V. K</creatorcontrib><creatorcontrib>GALLAGHER, A. M</creatorcontrib><creatorcontrib>PIERCE, G. K</creatorcontrib><creatorcontrib>PATTEN, E. A</creatorcontrib><title>HgCdTe focal plane arrays for dual-color mid- and long-wavelength infrared detection</title><title>Journal of electronic materials</title><description>Raytheon Vision Systems (RVS, Goleta, CA) in collaboration with HRL Laboratories (Malibu, CA) is contributing to the maturation and manufacturing readiness of third-generation, dual-color, HgCdTe infrared staring focal plane arrays (FPAs). This paper will highlight data from the routine growth and fabrication of 256 × 256 30-µm unit-cell staring FPAs that provide dual-color detection in the mid-wavelength infrared (MWIR) and long wavelength infrared (LWIR) spectral regions. The FPAs configured for MWIR/MWIR, MWIR/LWIR, and LWIR/LWIR detection are used for target identification, signature recognition, and clutter rejection in a wide variety of space and ground-based applications. Optimized triple-layer heterojunction (TLHJ) device designs and molecular beam epitaxy (MBE) growth using in-situ controls has contributed to individual bands in all dual-color FPA configurations exhibiting high operability (>99%) and both performance and FPA functionality comparable to state-of-the-art, single-color technology. The measured spectral cross talk from out-of-band radiation for either band is also typically less than 10%. An FPA architecture based on a single-mesa, single-indium bump, and sequential-mode operation leverages current single-color processes in production while also providing compatibility with existing second-generation technologies. [PUBLICATION ABSTRACT] Key words: Dual-color, focal plane array (FPA), mid-wavelength infrared (MWIR), long-wavelength infrared (LWIR), molecular beam epitaxy (MBE)</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Growth from vapor</subject><subject>Infrared radiation</subject><subject>Materials science</subject><subject>Mercury cadmium telluride</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Molecular beam epitaxy</subject><subject>Physics</subject><subject>Radiation detectors</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE1LAzEQhoMoWKs_wNsi6C2aSTbp5ihFrVDwUsFbSJNJ3bLdrclW6b83SwuCh2E-eOdl5iHkGtg9MDZ5SABKlZSxIYSm5QkZgSwFhUp9nJIREwqo5EKek4uU1oyBhApGZDFbTf0Ci9A52xTbxrZY2BjtPuVRLPzONtR1TS43taeFbX3RdO2K_thvbLBd9Z9F3YZoI_rCY4-ur7v2kpwF2yS8OuYxeX9-WkxndP728jp9nFMnBPRUKw5ehokIuUfnkPlQhioA4yiwdFw5YZfOI59ozgGWWgfJuZQBlFA4EWNyd_Ddxu5rh6k3mzo5bIYvul0yXFesKrXOwpt_wnW3i22-zXBWZnOteRbBQeRil1LEYLax3ti4N8DMANkcIJsM2QyQTZl3bo_GNmWAGUTr6vS3KCs1mItfpIh7ug</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>SMITH, E. P. G</creator><creator>PHAM, L. T</creator><creator>COUSSA, R. A</creator><creator>KOSAI, K</creator><creator>RADFORD, W. A</creator><creator>GIEGERICH, L. M</creator><creator>EDWARDS, J. M</creator><creator>JOHNSON, S. M</creator><creator>BAUR, S. T</creator><creator>ROTH, J. A</creator><creator>NOSHO, B</creator><creator>DE LYON, T. J</creator><creator>VENZOR, G. M</creator><creator>JENSEN, J. E</creator><creator>LONGSHORE, R. E</creator><creator>NORTON, E. M</creator><creator>NEWTON, M. D</creator><creator>GOETZ, P. M</creator><creator>RANDALL, V. K</creator><creator>GALLAGHER, A. M</creator><creator>PIERCE, G. K</creator><creator>PATTEN, E. A</creator><general>Institute of Electrical and Electronics Engineers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20040601</creationdate><title>HgCdTe focal plane arrays for dual-color mid- and long-wavelength infrared detection</title><author>SMITH, E. P. G ; PHAM, L. T ; COUSSA, R. A ; KOSAI, K ; RADFORD, W. A ; GIEGERICH, L. M ; EDWARDS, J. M ; JOHNSON, S. M ; BAUR, S. T ; ROTH, J. A ; NOSHO, B ; DE LYON, T. J ; VENZOR, G. M ; JENSEN, J. E ; LONGSHORE, R. E ; NORTON, E. M ; NEWTON, M. D ; GOETZ, P. M ; RANDALL, V. K ; GALLAGHER, A. M ; PIERCE, G. K ; PATTEN, E. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-9621d5f73fc33ecce0df4f8f102e3e4c26c3abcde2792211b99f52255f1636e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Growth from vapor</topic><topic>Infrared radiation</topic><topic>Materials science</topic><topic>Mercury cadmium telluride</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Molecular beam epitaxy</topic><topic>Physics</topic><topic>Radiation detectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SMITH, E. P. G</creatorcontrib><creatorcontrib>PHAM, L. T</creatorcontrib><creatorcontrib>COUSSA, R. A</creatorcontrib><creatorcontrib>KOSAI, K</creatorcontrib><creatorcontrib>RADFORD, W. A</creatorcontrib><creatorcontrib>GIEGERICH, L. M</creatorcontrib><creatorcontrib>EDWARDS, J. M</creatorcontrib><creatorcontrib>JOHNSON, S. M</creatorcontrib><creatorcontrib>BAUR, S. T</creatorcontrib><creatorcontrib>ROTH, J. A</creatorcontrib><creatorcontrib>NOSHO, B</creatorcontrib><creatorcontrib>DE LYON, T. J</creatorcontrib><creatorcontrib>VENZOR, G. M</creatorcontrib><creatorcontrib>JENSEN, J. E</creatorcontrib><creatorcontrib>LONGSHORE, R. E</creatorcontrib><creatorcontrib>NORTON, E. M</creatorcontrib><creatorcontrib>NEWTON, M. D</creatorcontrib><creatorcontrib>GOETZ, P. M</creatorcontrib><creatorcontrib>RANDALL, V. K</creatorcontrib><creatorcontrib>GALLAGHER, A. M</creatorcontrib><creatorcontrib>PIERCE, G. K</creatorcontrib><creatorcontrib>PATTEN, E. A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SMITH, E. P. G</au><au>PHAM, L. T</au><au>COUSSA, R. A</au><au>KOSAI, K</au><au>RADFORD, W. A</au><au>GIEGERICH, L. M</au><au>EDWARDS, J. M</au><au>JOHNSON, S. M</au><au>BAUR, S. T</au><au>ROTH, J. A</au><au>NOSHO, B</au><au>DE LYON, T. J</au><au>VENZOR, G. M</au><au>JENSEN, J. E</au><au>LONGSHORE, R. E</au><au>NORTON, E. M</au><au>NEWTON, M. D</au><au>GOETZ, P. M</au><au>RANDALL, V. K</au><au>GALLAGHER, A. M</au><au>PIERCE, G. K</au><au>PATTEN, E. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HgCdTe focal plane arrays for dual-color mid- and long-wavelength infrared detection</atitle><jtitle>Journal of electronic materials</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>33</volume><issue>6</issue><spage>509</spage><epage>516</epage><pages>509-516</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Raytheon Vision Systems (RVS, Goleta, CA) in collaboration with HRL Laboratories (Malibu, CA) is contributing to the maturation and manufacturing readiness of third-generation, dual-color, HgCdTe infrared staring focal plane arrays (FPAs). This paper will highlight data from the routine growth and fabrication of 256 × 256 30-µm unit-cell staring FPAs that provide dual-color detection in the mid-wavelength infrared (MWIR) and long wavelength infrared (LWIR) spectral regions. The FPAs configured for MWIR/MWIR, MWIR/LWIR, and LWIR/LWIR detection are used for target identification, signature recognition, and clutter rejection in a wide variety of space and ground-based applications. Optimized triple-layer heterojunction (TLHJ) device designs and molecular beam epitaxy (MBE) growth using in-situ controls has contributed to individual bands in all dual-color FPA configurations exhibiting high operability (>99%) and both performance and FPA functionality comparable to state-of-the-art, single-color technology. The measured spectral cross talk from out-of-band radiation for either band is also typically less than 10%. An FPA architecture based on a single-mesa, single-indium bump, and sequential-mode operation leverages current single-color processes in production while also providing compatibility with existing second-generation technologies. [PUBLICATION ABSTRACT] Key words: Dual-color, focal plane array (FPA), mid-wavelength infrared (MWIR), long-wavelength infrared (LWIR), molecular beam epitaxy (MBE)</abstract><cop>New York, NY</cop><pub>Institute of Electrical and Electronics Engineers</pub><doi>10.1007/s11664-004-0039-4</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2004-06, Vol.33 (6), p.509-516 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_miscellaneous_29808499 |
source | Springer Nature - Complete Springer Journals |
subjects | Cross-disciplinary physics: materials science rheology Exact sciences and technology Growth from vapor Infrared radiation Materials science Mercury cadmium telluride Methods of crystal growth physics of crystal growth Molecular beam epitaxy Physics Radiation detectors |
title | HgCdTe focal plane arrays for dual-color mid- and long-wavelength infrared detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HgCdTe%20focal%20plane%20arrays%20for%20dual-color%20mid-%20and%20long-wavelength%20infrared%20detection&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=SMITH,%20E.%20P.%20G&rft.date=2004-06-01&rft.volume=33&rft.issue=6&rft.spage=509&rft.epage=516&rft.pages=509-516&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-004-0039-4&rft_dat=%3Cproquest_cross%3E29808499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204922992&rft_id=info:pmid/&rfr_iscdi=true |