Central-Station Solar Hydrogen Power Plant
Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via...
Gespeichert in:
Veröffentlicht in: | Journal of solar energy engineering 2007-05, Vol.129 (2), p.179-183 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | 2 |
container_start_page | 179 |
container_title | Journal of solar energy engineering |
container_volume | 129 |
creator | Kolb, Gregory J Diver, Richard B Siegel, Nathan |
description | Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature (∼1000°C) power tower with a sulfuric acid∕hybrid thermochemical cycle was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is “hybrid” because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path. |
doi_str_mv | 10.1115/1.2710246 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29798283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29798283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a341t-e93c551a9130e2146ed18bb4e91e90fb8bd557ced9a911c52b1a1cab49b381d23</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pwbOXXhQUOvPyo02OMtQJAwfTc0jSV-nompl0yP57Ozbw6OldPu_Lly8h10AnACAfYcJKoEwUJ2QEkqlcaVWckhEFrfOCcTgnFymtKAXOJRuRhyl2fbRtvuxt34QuW4bWxmy2q2L4wi5bhB-M2aK1XX9JzmrbJrw63jH5fHn-mM7y-fvr2_RpnlsuoM9Rcy8lWA2cIgNRYAXKOYEaUNPaKVdJWXqs9EDAS-bAgrdOaMcVVIyPyd0hdxPD9xZTb9ZN8tgOHTBsk2G61Iop_j-khSg4hwHeH6CPIaWItdnEZm3jzgA1-9kMmONsg709htrkbVtH2_km_T2oklHF9u7m4Gxao1mFbeyGUYyQugTNfwE0-HMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20646331</pqid></control><display><type>article</type><title>Central-Station Solar Hydrogen Power Plant</title><source>ASME Transactions Journals (Current)</source><creator>Kolb, Gregory J ; Diver, Richard B ; Siegel, Nathan</creator><creatorcontrib>Kolb, Gregory J ; Diver, Richard B ; Siegel, Nathan</creatorcontrib><description>Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature (∼1000°C) power tower with a sulfuric acid∕hybrid thermochemical cycle was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is “hybrid” because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path.</description><identifier>ISSN: 0199-6231</identifier><identifier>EISSN: 1528-8986</identifier><identifier>DOI: 10.1115/1.2710246</identifier><identifier>CODEN: JSEEDO</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Energy ; Exact sciences and technology ; Natural energy ; Solar energy ; Solar thermal conversion ; Solar thermal power plants</subject><ispartof>Journal of solar energy engineering, 2007-05, Vol.129 (2), p.179-183</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a341t-e93c551a9130e2146ed18bb4e91e90fb8bd557ced9a911c52b1a1cab49b381d23</citedby><cites>FETCH-LOGICAL-a341t-e93c551a9130e2146ed18bb4e91e90fb8bd557ced9a911c52b1a1cab49b381d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38497</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18720826$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolb, Gregory J</creatorcontrib><creatorcontrib>Diver, Richard B</creatorcontrib><creatorcontrib>Siegel, Nathan</creatorcontrib><title>Central-Station Solar Hydrogen Power Plant</title><title>Journal of solar energy engineering</title><addtitle>J. Sol. Energy Eng</addtitle><description>Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature (∼1000°C) power tower with a sulfuric acid∕hybrid thermochemical cycle was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is “hybrid” because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Natural energy</subject><subject>Solar energy</subject><subject>Solar thermal conversion</subject><subject>Solar thermal power plants</subject><issn>0199-6231</issn><issn>1528-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqF0M9LwzAUB_AgCs7pwbOXXhQUOvPyo02OMtQJAwfTc0jSV-nompl0yP57Ozbw6OldPu_Lly8h10AnACAfYcJKoEwUJ2QEkqlcaVWckhEFrfOCcTgnFymtKAXOJRuRhyl2fbRtvuxt34QuW4bWxmy2q2L4wi5bhB-M2aK1XX9JzmrbJrw63jH5fHn-mM7y-fvr2_RpnlsuoM9Rcy8lWA2cIgNRYAXKOYEaUNPaKVdJWXqs9EDAS-bAgrdOaMcVVIyPyd0hdxPD9xZTb9ZN8tgOHTBsk2G61Iop_j-khSg4hwHeH6CPIaWItdnEZm3jzgA1-9kMmONsg709htrkbVtH2_km_T2oklHF9u7m4Gxao1mFbeyGUYyQugTNfwE0-HMY</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Kolb, Gregory J</creator><creator>Diver, Richard B</creator><creator>Siegel, Nathan</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20070501</creationdate><title>Central-Station Solar Hydrogen Power Plant</title><author>Kolb, Gregory J ; Diver, Richard B ; Siegel, Nathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a341t-e93c551a9130e2146ed18bb4e91e90fb8bd557ced9a911c52b1a1cab49b381d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Natural energy</topic><topic>Solar energy</topic><topic>Solar thermal conversion</topic><topic>Solar thermal power plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolb, Gregory J</creatorcontrib><creatorcontrib>Diver, Richard B</creatorcontrib><creatorcontrib>Siegel, Nathan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of solar energy engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolb, Gregory J</au><au>Diver, Richard B</au><au>Siegel, Nathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Central-Station Solar Hydrogen Power Plant</atitle><jtitle>Journal of solar energy engineering</jtitle><stitle>J. Sol. Energy Eng</stitle><date>2007-05-01</date><risdate>2007</risdate><volume>129</volume><issue>2</issue><spage>179</spage><epage>183</epage><pages>179-183</pages><issn>0199-6231</issn><eissn>1528-8986</eissn><coden>JSEEDO</coden><abstract>Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature (∼1000°C) power tower with a sulfuric acid∕hybrid thermochemical cycle was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is “hybrid” because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2710246</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0199-6231 |
ispartof | Journal of solar energy engineering, 2007-05, Vol.129 (2), p.179-183 |
issn | 0199-6231 1528-8986 |
language | eng |
recordid | cdi_proquest_miscellaneous_29798283 |
source | ASME Transactions Journals (Current) |
subjects | Applied sciences Energy Exact sciences and technology Natural energy Solar energy Solar thermal conversion Solar thermal power plants |
title | Central-Station Solar Hydrogen Power Plant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Central-Station%20Solar%20Hydrogen%20Power%20Plant&rft.jtitle=Journal%20of%20solar%20energy%20engineering&rft.au=Kolb,%20Gregory%20J&rft.date=2007-05-01&rft.volume=129&rft.issue=2&rft.spage=179&rft.epage=183&rft.pages=179-183&rft.issn=0199-6231&rft.eissn=1528-8986&rft.coden=JSEEDO&rft_id=info:doi/10.1115/1.2710246&rft_dat=%3Cproquest_cross%3E29798283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20646331&rft_id=info:pmid/&rfr_iscdi=true |