Central-Station Solar Hydrogen Power Plant

Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solar energy engineering 2007-05, Vol.129 (2), p.179-183
Hauptverfasser: Kolb, Gregory J, Diver, Richard B, Siegel, Nathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 2
container_start_page 179
container_title Journal of solar energy engineering
container_volume 129
creator Kolb, Gregory J
Diver, Richard B
Siegel, Nathan
description Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature (∼1000°C) power tower with a sulfuric acid∕hybrid thermochemical cycle was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is “hybrid” because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path.
doi_str_mv 10.1115/1.2710246
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29798283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29798283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a341t-e93c551a9130e2146ed18bb4e91e90fb8bd557ced9a911c52b1a1cab49b381d23</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pwbOXXhQUOvPyo02OMtQJAwfTc0jSV-nompl0yP57Ozbw6OldPu_Lly8h10AnACAfYcJKoEwUJ2QEkqlcaVWckhEFrfOCcTgnFymtKAXOJRuRhyl2fbRtvuxt34QuW4bWxmy2q2L4wi5bhB-M2aK1XX9JzmrbJrw63jH5fHn-mM7y-fvr2_RpnlsuoM9Rcy8lWA2cIgNRYAXKOYEaUNPaKVdJWXqs9EDAS-bAgrdOaMcVVIyPyd0hdxPD9xZTb9ZN8tgOHTBsk2G61Iop_j-khSg4hwHeH6CPIaWItdnEZm3jzgA1-9kMmONsg709htrkbVtH2_km_T2oklHF9u7m4Gxao1mFbeyGUYyQugTNfwE0-HMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20646331</pqid></control><display><type>article</type><title>Central-Station Solar Hydrogen Power Plant</title><source>ASME Transactions Journals (Current)</source><creator>Kolb, Gregory J ; Diver, Richard B ; Siegel, Nathan</creator><creatorcontrib>Kolb, Gregory J ; Diver, Richard B ; Siegel, Nathan</creatorcontrib><description>Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature (∼1000°C) power tower with a sulfuric acid∕hybrid thermochemical cycle was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is “hybrid” because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path.</description><identifier>ISSN: 0199-6231</identifier><identifier>EISSN: 1528-8986</identifier><identifier>DOI: 10.1115/1.2710246</identifier><identifier>CODEN: JSEEDO</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Energy ; Exact sciences and technology ; Natural energy ; Solar energy ; Solar thermal conversion ; Solar thermal power plants</subject><ispartof>Journal of solar energy engineering, 2007-05, Vol.129 (2), p.179-183</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a341t-e93c551a9130e2146ed18bb4e91e90fb8bd557ced9a911c52b1a1cab49b381d23</citedby><cites>FETCH-LOGICAL-a341t-e93c551a9130e2146ed18bb4e91e90fb8bd557ced9a911c52b1a1cab49b381d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38497</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18720826$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolb, Gregory J</creatorcontrib><creatorcontrib>Diver, Richard B</creatorcontrib><creatorcontrib>Siegel, Nathan</creatorcontrib><title>Central-Station Solar Hydrogen Power Plant</title><title>Journal of solar energy engineering</title><addtitle>J. Sol. Energy Eng</addtitle><description>Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature (∼1000°C) power tower with a sulfuric acid∕hybrid thermochemical cycle was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is “hybrid” because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Natural energy</subject><subject>Solar energy</subject><subject>Solar thermal conversion</subject><subject>Solar thermal power plants</subject><issn>0199-6231</issn><issn>1528-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqF0M9LwzAUB_AgCs7pwbOXXhQUOvPyo02OMtQJAwfTc0jSV-nompl0yP57Ozbw6OldPu_Lly8h10AnACAfYcJKoEwUJ2QEkqlcaVWckhEFrfOCcTgnFymtKAXOJRuRhyl2fbRtvuxt34QuW4bWxmy2q2L4wi5bhB-M2aK1XX9JzmrbJrw63jH5fHn-mM7y-fvr2_RpnlsuoM9Rcy8lWA2cIgNRYAXKOYEaUNPaKVdJWXqs9EDAS-bAgrdOaMcVVIyPyd0hdxPD9xZTb9ZN8tgOHTBsk2G61Iop_j-khSg4hwHeH6CPIaWItdnEZm3jzgA1-9kMmONsg709htrkbVtH2_km_T2oklHF9u7m4Gxao1mFbeyGUYyQugTNfwE0-HMY</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Kolb, Gregory J</creator><creator>Diver, Richard B</creator><creator>Siegel, Nathan</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20070501</creationdate><title>Central-Station Solar Hydrogen Power Plant</title><author>Kolb, Gregory J ; Diver, Richard B ; Siegel, Nathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a341t-e93c551a9130e2146ed18bb4e91e90fb8bd557ced9a911c52b1a1cab49b381d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Natural energy</topic><topic>Solar energy</topic><topic>Solar thermal conversion</topic><topic>Solar thermal power plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolb, Gregory J</creatorcontrib><creatorcontrib>Diver, Richard B</creatorcontrib><creatorcontrib>Siegel, Nathan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of solar energy engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolb, Gregory J</au><au>Diver, Richard B</au><au>Siegel, Nathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Central-Station Solar Hydrogen Power Plant</atitle><jtitle>Journal of solar energy engineering</jtitle><stitle>J. Sol. Energy Eng</stitle><date>2007-05-01</date><risdate>2007</risdate><volume>129</volume><issue>2</issue><spage>179</spage><epage>183</epage><pages>179-183</pages><issn>0199-6231</issn><eissn>1528-8986</eissn><coden>JSEEDO</coden><abstract>Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature (∼1000°C) power tower with a sulfuric acid∕hybrid thermochemical cycle was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is “hybrid” because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2710246</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0199-6231
ispartof Journal of solar energy engineering, 2007-05, Vol.129 (2), p.179-183
issn 0199-6231
1528-8986
language eng
recordid cdi_proquest_miscellaneous_29798283
source ASME Transactions Journals (Current)
subjects Applied sciences
Energy
Exact sciences and technology
Natural energy
Solar energy
Solar thermal conversion
Solar thermal power plants
title Central-Station Solar Hydrogen Power Plant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Central-Station%20Solar%20Hydrogen%20Power%20Plant&rft.jtitle=Journal%20of%20solar%20energy%20engineering&rft.au=Kolb,%20Gregory%20J&rft.date=2007-05-01&rft.volume=129&rft.issue=2&rft.spage=179&rft.epage=183&rft.pages=179-183&rft.issn=0199-6231&rft.eissn=1528-8986&rft.coden=JSEEDO&rft_id=info:doi/10.1115/1.2710246&rft_dat=%3Cproquest_cross%3E29798283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20646331&rft_id=info:pmid/&rfr_iscdi=true