Central-Station Solar Hydrogen Power Plant

Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solar energy engineering 2007-05, Vol.129 (2), p.179-183
Hauptverfasser: Kolb, Gregory J, Diver, Richard B, Siegel, Nathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature (∼1000°C) power tower with a sulfuric acid∕hybrid thermochemical cycle was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is “hybrid” because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path.
ISSN:0199-6231
1528-8986
DOI:10.1115/1.2710246