Nanofiltration of ammonium nitrate solutions. Study of influent parameters

Many water sources deal with the problem of increasing nitrate concentrations above authorised levels for drinking water. In order to minimise this amount of pollution and to achieve high quality of water and reused water in the distribution system, membrane processes are becoming a promising techno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revue des sciences de l'eau 2001-01, Vol.14 (4), p.511-523
Hauptverfasser: Paugam, L, Taha, S, Cabon, J, Gondrexon, N, Dorange, G
Format: Artikel
Sprache:fre
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many water sources deal with the problem of increasing nitrate concentrations above authorised levels for drinking water. In order to minimise this amount of pollution and to achieve high quality of water and reused water in the distribution system, membrane processes are becoming a promising technology. Indeed, they present the major advantages of a small land area requirement, low temperature operation, continuous separation, better effluent quality, little or no sludge production and a large reduction in the quantities of chemical additives. Reverse osmosis has already been used to remove most of the nitrates together with the other solutes, but the disadvantage is that this technique induces a total demineralisation of the treated water. Another possible filtration process, nanofiltration, has been investigated in this study while no extensive research has been carried out on its nitrate removal potential. Theories cannot adequately predict the influence of operating parameters on membrane performance. Consequently, new membranes and modules must be experimentally evaluated for each new application. The main objective of this study was to provide fundamental data for designing an operation of nanofiltration under various operating conditions such as transmembrane pressure, cross-flow velocity and initial feed concentration for drinking water and water reuse purposes.
ISSN:0992-7158