Evolutionary fuzzy logic control of base-isolated structures in response to earthquake activity

This paper presents a design procedure of an evolutionary fuzzy logic controller (EFLC) for a class of base‐isolated structures subjected to seismic activity with the goal to reduce the absolute motion of the base. The structure is controlled through a single force applied from a controllable MR dam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural control and health monitoring 2007-02, Vol.14 (1), p.62-82
Hauptverfasser: Dounis, A. I., Tiropanis, P., Syrcos, G. P., Tseles, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a design procedure of an evolutionary fuzzy logic controller (EFLC) for a class of base‐isolated structures subjected to seismic activity with the goal to reduce the absolute motion of the base. The structure is controlled through a single force applied from a controllable MR damper placed on the first storey of the structure. The restraining control force is computed in real time, using an evolutionary fuzzy logic controller. The evolutionary fuzzy controller possesses the parameters of membership functions whose optimum values are computed using genetic algorithms (GA). The resultant disturbance mitigation of the proposed controller has been verified through extensive simulation of a six‐storey structure, using disparate earthquake ground motions. Three main advantages of the evolutionary fuzzy logic controller can be summarized as follows. First, external disturbances can be considered in the EFLC, second, the proposed EFLC can control a structure with unknown dynamics, and third, the EFLC can easily be applied to semi‐active structural control. Copyright © 2005 John Wiley & Sons, Ltd.
ISSN:1545-2255
1545-2263
DOI:10.1002/stc.83