Ball-milling with a fluid: A powerful means for new syntheses
By reactive ball-milling in the presence of a fluid (either liquid as dodecane or gaseous as hydrogen), it is possible to synthesize nanomaterials as diverse as: alkali metal hydrides; well-crystallized highly anisometric graphite (HAG) whose typical particle size is a thickness of 40 nm for a mean...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2007-05, Vol.434, p.410-414 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By reactive ball-milling in the presence of a fluid (either liquid as dodecane or gaseous as hydrogen), it is possible to synthesize nanomaterials as diverse as: alkali metal hydrides; well-crystallized highly anisometric graphite (HAG) whose typical particle size is a thickness of 40
nm for a mean diameter of several micrometers; a superdense lithium–graphite intercalation compound: LiC
3; maghemite (γFe
2O
3) and its composites with graphite. Most of those compounds present interesting electrochemical properties and can be used as anodes in lithium-ion batteries. Depending on the system, the role of the fluid can be either a shock moderator, avoiding the amorphization of the material (e.g. graphite), or a reagent (e.g. hydrogen forms alkali metal hydride, water oxidizes transition metal powders). Some reaction mechanisms are described in this paper with a particular attention to the oxidation by water of chromium, nickel and copper. |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2006.08.318 |