Modeling Klamath River System Operations for Quantity and Quality

Alternative water management scenarios for a portion of the mainstem Klamath River from Keno, Oregon, to Seiad Valley, California, were evaluated using computer models of water quantity (MODSIM) and quality (HEC-5Q). These models were used to explore the potential for changing system operations to i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of water resources planning and management 2001-09, Vol.127 (5), p.284-294
Hauptverfasser: Campbell, Sharon G, Hanna, R. Blair, Flug, Marshall, Scott, John F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alternative water management scenarios for a portion of the mainstem Klamath River from Keno, Oregon, to Seiad Valley, California, were evaluated using computer models of water quantity (MODSIM) and quality (HEC-5Q). These models were used to explore the potential for changing system operations to improve summer fall water quality conditions to benefit declining anadromous fish populations such as steelhead, coho, and fall chinook salmon. By comparing and contrasting several model simulation results, some operational strategies that could improve water quality were determined. Most of the alternatives evaluated decreased water temperature less than 2°C. For some alternatives, dissolved oxygen could be changed as much as 5 mg L, but was often reduced, rather than increased (or improved). Resource managers need to be made aware that implementation of any strategy to enhance water quality conditions in the Klamath River could produce desirable beneficial results that are both spatially and temporally limited. In addition, undesirable water quality conditions, i.e., higher water temperature or lower dissolved oxygen concentration at other upstream or downstream locations, may also result.
ISSN:0733-9496
1943-5452
DOI:10.1061/(ASCE)0733-9496(2001)127:5(284)